Masters Presentation

D. DAKOTA BLAIR

March 20, 2007

Abstract

This is a short introduction to a few aspects of simplicial topology which coupled with the correct definitions extends the Matrix Tree Theorem to acyclic complexes.

Definition 1 (Spanning Tree) Given a graph G with |G| = n, a spanning tree of G is a set T of edges and verticies such that every vertex of G is in T, T has no cycles ($\tilde{H}_1 = 0$) and the number of edges of T is ||T|| = n - 1.

Definition 2 (Incidence (boundary) matrix of G, $\partial(G)$) Given a graph G with e edges and v verticies, define an $e \times v$ matrix $\partial(G)$ with $\partial(G)_{e_0,v_0} = 1$ if e_0 is incident with v_0 and 0 otherwise.

Definition 3 (The Laplacian matrix of G, L(G)) $L(G) = \partial(G)\partial(G)^T$

Definition 4 (The reduced Laplacian matrix of G, $L_r(G)$) The Laplacian matrix of G the row of a single vertex removed.

Theorem 1 (Matrix Tree Theorem) A graph G has $|\det L_r(G)|$ spanning trees.

Proof:

$$\det L_r(G) = \det \partial_r(G)\partial_r(G)^T = \sum_T (\det \partial_r(T))^2 = \sum_T (\pm 1)^2$$

where the last two sums are over every spanning tree of G.

Q.E.D.

Definition 5 (*n*-simplex) The *n*-dimensional triangle, formally

$$\Delta^{n} = \{ (t_{1}, \dots, t_{n+1}) \in \mathbb{R}^{n} | t_{1} + \dots + t_{n} = 1 \text{ and } t_{i} \ge 0 \}$$

Definition 6 (The boundary homomorphism ∂) *Define* $\partial_n : \Delta_n(X) \to \Delta_{n-1}(X)$ *by specifying its value on basis elements, that is,*

$$\partial_n(\sigma_\alpha) = \sum_i (-1)^i \sigma_\alpha|_{\{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}}$$

where $\Delta_n(X)$ is the free abelian group with basis the open *n*-simplicies of *X*.

Theorem 2 $\partial^2 = 0$

Proof: Consider the sequence

$$\Delta_n(X) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X)$$

From the definition we have

$$\partial_n(\sigma) = \sum_i (-1)^i \sigma|_{\{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}}$$

therefore

$$\partial_{n-1}\partial_n(\sigma) = \sum_{j < i} (-1)^i (-1)^j \sigma|_{\{v_0, \dots, v_{j-1}, v_{j+1}, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}} \\ + \sum_{j > i} (-1)^i (-1)^{j-1} \sigma|_{\{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}} = 0$$

The two sums are symmetric in *i* and *j*, we may replace *i* with *j* in the latter to see that the whole sum is zero.

Definition 7 (Simplicial Complex) A set K of simplicies which satisfies

- any face of a simplex in K is also in K.
- for any two simplicies $s_1, s_2 \in K$, their intersection is a face of both s_1 and s_2 .

Note that the empty set is $\partial \Delta^0$ and hence is a face of every complex.

Definition 8 (The *n***th Simplicial Homology Group** $H_n(X)$) In the chain complex

$$\cdots \longrightarrow \Delta_n(X) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X) \longrightarrow \cdots \longrightarrow \delta_0 \xrightarrow{\partial_0} 0$$

define $H_n(x)$ as

$$H_n(X) = Ker \,\partial_n / Im \,\partial_{n+1}$$

Definition 9 (The Reduced Homology Group $\tilde{H}_n(X)$) *Given a nonempty X, in the chain complex*

$$\cdots \longrightarrow \Delta_n(X) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X) \longrightarrow \cdots \longrightarrow \delta_0 \xrightarrow{\varepsilon} \mathbb{Z}$$

define $\tilde{H}_n(x)$ as

$$\tilde{H}_n(X) = Ker \,\partial_n / Im \,\partial_{n+1}.$$

Here $\varepsilon(\sum_i n_i \sigma_i) = \sum_i n_i$.

Definition 10 (Acyclic Complex) A simplicial complex K which is connected and $H_i(K) = 0$ for all i > 0.

Definition 11 (Simplicial Spanning Tree) Given a k-dimensional complex Δ a simplical panning tree is a k-dimensional complex T containing all k-1-dimensional faces of Δ (that is, $T^{k-1} = \Delta^{k-1}$) and

- $\tilde{H}_k = 0$ (Acyclic)
- \tilde{H}_{k-1} is a finite group.

Theorem 3 (Simplicial Matrix Tree Theorem) Given a set of facets U of a k-1spanning tree of Δ and reducing L by all of U, defining $\Delta_U = U \cup \Delta^{k-2}$ we may now calculate

$$\sum_{T \in SST(\Delta)} |\tilde{H}_{k-1}(T)|^2 = \frac{|H_{k-2}(\Delta)|^2}{|\tilde{H}_{k-2}(\Delta_U)|^2} \det L_r.$$