Masters Presentation

D. Dakota Blair

March 20, 2007

Abstract

This is a short introduction to a few aspects of simplicial topology which coupled with the correct definitions extends the Matrix Tree Theorem to acyclic complexes.

Definition 1 (Spanning Tree) Given a graph G with $|G|=n$, a spanning tree of G is a set T of edges and verticies such that every vertex of G is in T, T has no cycles $\left(\tilde{H}_{1}=0\right)$ and the number of edges of T is $\|T\|=n-1$.

Definition 2 (Incidence (boundary) matrix of $G, \partial(G)$) Given a graph G with e edges and v verticies, define an $e \times v$ matrix $\partial(G)$ with $\partial(G)_{e_{0}, v_{0}}=1$ if e_{0} is incident with v_{0} and 0 otherwise.

Definition 3 (The Laplacian matrix of G, $\mathbf{L}(\mathbf{G})) L(G)=\partial(G) \partial(G)^{T}$
Definition 4 (The reduced Laplacian matrix of $G, L_{r}(G)$) The Laplacian matrix of G the row of a single vertex removed.

Theorem 1 (Matrix Tree Theorem) A graph G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees.
Proof:

$$
\operatorname{det} L_{r}(G)=\operatorname{det} \partial_{r}(G) \partial_{r}(G)^{T}=\sum_{T}\left(\operatorname{det} \partial_{r}(T)\right)^{2}=\sum_{T}(\pm 1)^{2}
$$

where the last two sums are over every spanning tree of G.

Definition 5 (n-simplex) The n-dimensional triangle, formally

$$
\Delta^{n}=\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in \mathbb{R}^{n} \mid t_{1}+\cdots+t_{n}=1 \text { and } t_{i} \geq 0\right\}
$$

Definition 6 (The boundary homomorphism ∂) Define $\partial_{n}: \Delta_{n}(X) \rightarrow \Delta_{n-1}(X)$ by specifying its value on basis elements, that is,

$$
\partial_{n}\left(\sigma_{\alpha}\right)=\left.\sum_{i}(-1)^{i} \sigma_{\alpha}\right|_{\left\langle v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right\}}
$$

where $\Delta_{n}(X)$ is the free abelian group with basis the open n-simplicies of X.
Theorem $2 \partial^{2}=0$

Proof: Consider the sequence

$$
\Delta_{n}(X) \xrightarrow{\partial_{n}} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X)
$$

From the definition we have

$$
\partial_{n}(\sigma)=\left.\sum_{i}(-1)^{i} \sigma\right|_{\left\{v_{0}, \ldots v_{i-1}, v_{i+1}, \ldots, v_{n}\right\}}
$$

therefore

$$
\begin{aligned}
\partial_{n-1} \partial_{n}(\sigma)= & \left.\sum_{j<i}(-1)^{i}(-1)^{j} \sigma\right|_{\left\{v_{0}, \ldots v_{j-1}, v_{j+1} \ldots v_{i-1}, v_{i+1}, \ldots, v_{n}\right\}} \\
& +\left.\sum_{j>i}(-1)^{i}(-1)^{j-1} \sigma\right|_{\left\{v_{0}, \ldots v_{i-1}, v_{i+1} \ldots v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}}=0
\end{aligned}
$$

The two sums are symmetric in i and j, we may replace i with j in the latter to see that the whole sum is zero.

Definition 7 (Simplicial Complex) A set K of simplicies which satisfies

- any face of a simplex in K is also in K.
- for any two simplicies $s_{1}, s_{2} \in K$, their intersection is a face of both s_{1} and s_{2}.

Note that the empty set is $\partial \Delta^{0}$ and hence is a face of every complex.

Definition 8 (The nth Simplicial Homology Group $H_{n}(X)$) In the chain complex

$$
\cdots \longrightarrow \Delta_{n}(X) \xrightarrow{\partial_{n}} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X) \longrightarrow \cdots \longrightarrow \delta_{0} \xrightarrow{\partial_{0}} 0
$$

define $H_{n}(x)$ as

$$
H_{n}(X)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

Definition 9 (The Reduced Homology Group $\tilde{H}_{n}(X)$) Given a nonempty X, in the chain complex

$$
\cdots \longrightarrow \Delta_{n}(X) \xrightarrow{\partial_{n}} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X) \longrightarrow \cdots \longrightarrow \delta_{0} \xrightarrow{\varepsilon} \mathbb{Z}
$$

define $\tilde{H}_{n}(x)$ as

$$
\tilde{H}_{n}(X)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

Here $\varepsilon\left(\sum_{i} n_{i} \sigma_{i}\right)=\sum_{i} n_{i}$.

Definition 10 (Acyclic Complex) A simplicial complex K which is connected and $H_{i}(K)=0$ for all $i>0$.

Definition 11 (Simplicial Spanning Tree) Given a k-dimensional complex Δa simplical panning tree is a k-dimensional complex T containing all $k-1$-dimensional faces of $\Delta\left(\right.$ that is, $\left.T^{k-1}=\Delta^{k-1}\right)$ and

- $\tilde{H}_{k}=0$ (Acyclic)
- \tilde{H}_{k-1} is a finite group.

Theorem 3 (Simplicial Matrix Tree Theorem) Given a set offacets U of a k-1spanning tree of Δ and reducing L by all of U, defining $\Delta_{U}=U \cup \Delta^{k-2}$ we may now calculate

$$
\sum_{T \in S S T(\Delta)}\left|\tilde{H}_{k-1}(T)\right|^{2}=\frac{\left|\tilde{H}_{k-2}(\Delta)\right|^{2}}{\left|\tilde{H}_{k-2}\left(\Delta_{U}\right)\right|^{2}} \operatorname{det} L_{r} .
$$

