PROPERTIES OF STERN-LIKE SEQUENCES

DAKOTA BLAIR

Notation

Let c be an ordinal. If c is finite, associate it to the corresponding integer $c=|c|$. This is an overloaded notation, but context will determine what type of object c is being considered at the time. For example in the two cases $0 \in c$ and $0<c$ the symbol c is a set and an integer respectively. Let s be a sequence, that is $s=$ $\left(s_{i}\right)_{i \in I}$. Denote the length of s as $|s|=|I|$. Further if $s=\left(s_{i}\right)_{i \in I}$ and $i^{\prime} \in I$ then $s\left(i^{\prime}\right)=s_{i^{\prime}}$. Denote by $c^{<\omega}$ the set of all finite sequences $s=(s(i))_{i \in|s|}$ where $s(i) \in c$, that is, $c^{<\omega}=\left\{s| | s \mid<\omega, s=(s(i))_{i \in|s|}\right.$ where $\left.s(i) \in c\right\}$. Let $s, s^{\prime} \in c^{<\omega}$. Denote concatenation by juxtaposition, that is $s^{\prime \prime}=s s^{\prime}=\left\{s^{\prime \prime}(i)\right\}_{i \in|s|+\left|s^{\prime}\right|}$ where $s^{\prime \prime}(i)=s^{\prime}(i)$ if $i<\left|s^{\prime}\right|$ and $s^{\prime \prime}(i)=s\left(i-\left|s^{\prime}\right|\right)$ otherwise. If $s \in c^{<\omega}$ is written adjacent to $i<c$ then i is considered to be a sequence of length 1 and concatenation as defined above applies. Sequences are ordered lexicographically greatest index first, denoted $\underset{\text { lex }}{<}$ with the added definition that if $|s|<\left|s^{\prime}\right|$ then $s<s_{\text {lex }}^{\prime}$. In particular $22 \underset{\text { lex }}{<} 122 \underset{\text { lex }}{<} 200$. The bit shift right operator, >> acts by removing the initial element from a sequence. That is, given $s=\left(s_{i}\right)_{i \in|s|}$ let $\gg s=(s(i+1))_{i \in|s|-1}$.

Properties of Stern-Like sequences

Definition (Stern-like sequences). Let $b \geq 2$ be an integer. Define $S_{b}(n)$ recursively with

$$
\begin{aligned}
S_{b}(0) & =S_{b}(1)=\cdots=S_{b}(b-1)=1 \\
S_{b}(b n+i) & =S_{b}(n) \text { for } 0<i<b \\
S_{b}(b n) & =S_{b}(n)+S_{b}(n-1) .
\end{aligned}
$$

Definition (Place Value Partition). Let c be a positive integer and $s \in c^{<\omega}$. Then s is a place value partition base b of n where

$$
n=p v e(s, b)=\sum_{i \in|s|} s(i) b^{i} .
$$

The set of place value partitions of n base b carrying at c is

$$
p v p(n, b, c)=\left\{s \mid n=p v e(s, b), s \in c^{\omega}, s(|s|) \neq 0\right\} .
$$

Further define the number of place value partitions of n base b carrying at c as

$$
\operatorname{pvr}(n, b, c)=|p v p(n, b, c)|
$$

and the frequency of occurences of m from n^{\prime} to $n^{\prime \prime}$ as

$$
\operatorname{pvr} f\left(m, n^{\prime}, n^{\prime \prime}, b, c\right)=\left|\left\{n \mid \operatorname{pvr}(n, b, c)=m, n^{\prime} \leq n \leq n^{\prime \prime}\right\}\right|
$$

Lemma. The usual b-ary partition of n is lexicographically greatest among pvp (n, b, c) when $c \geq b$.

Lemma. If $r, s, t \in b^{<\omega}, r t=s t$ and $t(i) \neq 0$ for all $i \in|t|$ then $S_{b}(p v e(r t, b))=$ $S_{b}(p v e(s t, b))$.

Corollary. If the b-ary expansion of n contains no zeroes then $S_{b}(n)=1$.
Theorem. For all integers b and n such that $b>1$ and n nonnegative

$$
\operatorname{pvr}(n, b, b+1)=S_{b}(n) .
$$

Lemma.

$$
\operatorname{pvrf}\left(1, \frac{b^{n}-1}{b-1}+1, \frac{b^{n+1}-b}{b-1}, b, b+1\right)=(b-1)^{n}
$$

Lemma. Given $n>0$, if the b-ary expansion of n contains no zeroes then $S_{b}(n)=1$.
The case of $S_{3}(n)$
Let $a_{n}=\frac{3^{n}}{2}+1$ and $b_{n}=\frac{3^{n}}{2}$.
Lemma. Let $n=3 k+2$. Then $S_{3}(n)+S_{3}(n+2)=S_{3}(n+1)$.
Proof. This is strictly a derivation based on the recurrence for $S_{3}(n)$.

$$
\begin{aligned}
S_{3}(n+1) & =S_{3}(3 k+3)=S_{3}(3(k+1)) \\
& =S_{3}(k)+S_{3}(k+1) \\
& =S_{3}(3 k+2)+S_{3}(3(k+1)+1) \\
S_{3}(n+1) & =S_{3}(n)+S_{3}(n+2) .
\end{aligned}
$$

Lemma. Let $m, n>1$. If there exists i, j such that $m=c_{i}+j$ and $n=b_{i}-j$ then $S_{3}(m)=S_{3}(n)$.

