PROPERTIES OF STERN-LIKE SEQUENCES

DAKOTA BLAIR

NOTATION

Let c be an ordinal. If c is finite, associate it to the corresponding integer c = |c|. This is an overloaded notation, but context will determine what type of object c is being considered at the time. For example in the two cases $0 \in c$ and 0 < c the symbol c is a set and an integer respectively. Let s be a sequence, that is $s = (s_i)_{i \in I}$. Denote the length of s as |s| = |I|. Further if $s = (s_i)_{i \in I}$ and $i' \in I$ then $s(i') = s_{i'}$. Denote by $c^{<\omega}$ the set of all finite sequences $s = (s(i))_{i \in |s|}$ where $s(i) \in c$, that is, $c^{<\omega} = \{s||s| < \omega, s = (s(i))_{i \in |s|}$ where $s(i) \in c\}$. Let $s, s' \in c^{<\omega}$. Denote concatenation by juxtaposition, that is $s'' = ss' = \{s''(i)\}_{i \in |s|+|s'|}$ where s''(i) = s'(i) if i < |s'| and s''(i) = s(i - |s'|) otherwise. If $s \in c^{<\omega}$ is written adjacent to i < c then i is considered to be a sequence of length 1 and concatenation as defined above applies. Sequences are ordered lexicographically greatest index first, denoted \leq_{lex} with the added definition that if |s| < |s'| then s < s'. In particular 22 < 122 < 200. The bit shift right operator, >> acts by removing the initial element from a sequence. That is, given $s = (s_i)_{i \in |s|}$ let >> $s = (s(i + 1))_{i \in |s|-1}$.

PROPERTIES OF STERN-LIKE SEQUENCES

Definition (Stern-like sequences). Let $b \ge 2$ be an integer. Define $S_b(n)$ recursively with

$$S_b(0) = S_b(1) = \dots = S_b(b-1) = 1$$

 $S_b(bn+i) = S_b(n) \text{ for } 0 < i < b$
 $S_b(bn) = S_b(n) + S_b(n-1).$

Definition (Place Value Partition). Let c be a positive integer and $s \in c^{<\omega}$. Then s is a place value partition base b of n where

$$n = pve(s, b) = \sum_{i \in |s|} s(i)b^i.$$

The set of place value partitions of n base b carrying at c is

$$pvp(n, b, c) = \{s | n = pve(s, b), s \in c^{\omega}, s(|s|) \neq 0\}$$

Further define the number of place value partitions of n base b carrying at c as

$$pvr(n, b, c) = |pvp(n, b, c)|$$

and the frequency of occurences of m from n' to n'' as

$$pvrf(m, n', n'', b, c) = \left| \left\{ n \left| pvr(n, b, c) = m, n' \le n \le n'' \right\} \right| \right.$$

Lemma. The usual b-ary partition of n is lexicographically greatest among pvp(n, b, c)when $c \ge b$.

Lemma. If $r, s, t \in b^{<\omega}, rt = st$ and $t(i) \neq 0$ for all $i \in |t|$ then $S_b(pve(rt, b)) = S_b(pve(st, b))$.

Corollary. If the b-ary expansion of n contains no zeroes then $S_b(n) = 1$.

Theorem. For all integers b and n such that b > 1 and n nonnegative

$$pvr(n, b, b+1) = S_b(n).$$

Lemma.

$$pvrf\left(1, \frac{b^n - 1}{b - 1} + 1, \frac{b^{n+1} - b}{b - 1}, b, b + 1\right) = (b - 1)^n$$

Lemma. Given n > 0, if the b-ary expansion of n contains no zeroes then $S_b(n) = 1$.

The case of $S_3(n)$

Let $a_n = \frac{3^n}{2} + 1$ and $b_n = \frac{3^n}{2}$.

Lemma. Let n = 3k + 2. Then $S_3(n) + S_3(n+2) = S_3(n+1)$.

Proof. This is strictly a derivation based on the recurrence for $S_3(n)$.

$$S_3(n+1) = S_3(3k+3) = S_3(3(k+1))$$

= $S_3(k) + S_3(k+1)$
= $S_3(3k+2) + S_3(3(k+1)+1)$
 $S_3(n+1) = S_3(n) + S_3(n+2).$

Lemma. Let m, n > 1. If there exists i, j such that $m = c_i + j$ and $n = b_i - j$ then $S_3(m) = S_3(n)$.