
PROPERTIES OF STERN-LIKE SEQUENCES

DAKOTA BLAIR

Notation

Let c be an ordinal. If c is finite, associate it to the corresponding integer c = |c|.
This is an overloaded notation, but context will determine what type of object c is

being considered at the time. For example in the two cases 0 ∈ c and 0 < c the

symbol c is a set and an integer respectively. Let s be a sequence, that is s = (si)i∈I .

Denote the length of s as |s| = |I|. A sequence is considered a 1 × |s| matrix with

transposition of s denoted by sT . Further if s = (si)i∈I and i′ ∈ I then s(i′) =

si′ . Denote by c<ω the set of all finite sequences s = (s(i))i∈|s| where s(i) ∈ c,

that is, c<ω =
{
s
∣∣|s| < ω, s = (s(i))i∈|s| where s(i) ∈ c

}
. Let s, s′ ∈ c<ω. Denote

concatenation by juxtaposition, that is s′′ = ss′ = {s′′(i)}i∈|s|+|s′| where s′′(i) = s′(i)

if i < |s′| and s′′(i) = s(i − |s′|) otherwise. If s ∈ c<ω is written adjacent to i < c

then i is considered to be a sequence of length 1 and concatenation as defined above

applies. Sequences are ordered lexicographically greatest index first, denoted <
lex

with

the added definition that if |s| < |s′| then s <
lex

s′. In particular 22 <
lex

122 <
lex

200. The

shift right operator, >> acts by removing the initial element from a sequence. That

is, given s = (si)i∈|s| let >>s = (s(i + 1))i∈|s|−1.

Stern-like sequences

Definition (Stern-like sequences). Let b ≥ 2 be an integer. Define Sb(n) recursively

with

Sb(0) = Sb(1) = · · · = Sb(b− 1) = 1

Sb(bn + r) = Sb(n) for 0 < r < b

Sb(bn) = Sb(n) + Sb(n− 1).

Definition (Place Value Partition). Let c be a positive integer and s ∈ c<ω. Then s

is a place value partition base b of n where

n = pve(s, b) =
∑
i∈|s|

s(i)bi.

The set of place value partitions of n base b carrying at c of length at most d is

pvp(n, b, c, d) =
{
s
∣∣n = pve(s, b), s ∈ c≤d, s(|s|) 6= 0

}
.
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The set of such partitons of any length is

pvp(n, b, c) =
⋃
d<ω

pvp(n, b, c, d).

Further define

pvr(n, b, c, d) = |pvp(n, b, c, d)| and pvr(n, b, c) = |pvp(n, b, c)|.

Denote the frequency of occurences of m from n′ to n′′ as

pvrf(m,n′, n′′, b, c) =
∣∣{n∣∣pvr(n, b, c) = m,n′ ≤ n ≤ n′′

}∣∣ .
Theorem. For all integers b and n such that b > 1 and n nonnegative

pvr(n, b, b + 1) = Sb(n).

Proof. For brevity let Ab(n) = pvr(n, b, b + 1). Note that the claim is true for n < b

by definition. Assume the induction hypothesis, that is Ab(m) = Sb(m), holds for

all m < n. Let r ∈ b such that r ≡ n (mod b). There are two cases, one where

r = 0 and the other where r > 0. Let n′ be such that n = n′b + r, a = Ab(n) and

a′ = Ab(n
′). Enumerate the place value representations of n and n′ as {si}i∈a and

{s′i}i∈a′ respectively. Given i, let s′′i = >>si that is, s′′i is the sequence resulting from

dropping the 0th index from si.

Assume first that r > 0. Thus pve(s′ir, b) = n for all i ∈ a hence Ab(n
′) ≤ Ab(n).

Note also that s′′i ∈ pvp(n′, b, b + 1) since pve(s′′i , b) = n′. Further these are distinct

because si(0) = r for all i ∈ a. Therefore Ab(n) ≤ Ab(n
′), so

pvr(n, b, b + 1) = Ab(n) = Ab(n
′) = Sb(n

′) = Sb(n
′b + r) = Sb(n)

when r > 0.

If r = 0 then for each i either si(0) = 0 or si(0) = b. Partition pvp(n, b, b + 1) into

C0 =
{
s ∈ pvp(n, b, b + 1)

∣∣s(0) = 0
}

and

Cb =
{
s ∈ pvp(n, b, b + 1)

∣∣s(0) = b
}
.

If si(0) = 0 then pve(s′′i , b) = n′. Since each i is associated to a distinct s′′i this shows

C0 ⊂ pvp(n′, b, b + 1) and |C0| ≤ Ab(n
′). Further for s′ ∈ Cb(n

′) it is the case that

pve(s′0, b) = bn′ = n therefore s′ ∈ C0 hence Ab(n
′) ≤ |C0|, thus |C0| = Ab(n

′).

If si(0) = b then pve(s′′i , b) = n′ − 1, so s′′i ∈ pvp(n′ − 1, b, b + 1). Then, similarly

as above, |Cb| = Ab(n
′ − 1). Therefore Ab(n) = |C0| + |Cb| = Ab(n

′) + Ab(n
′ − 1).

Consequently

pvr(n, b, b + 1) = Sb(n)

for all b and n such that b > 1 and n ≥ 0. �
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Theorem. Let

d = blogb(c− 1)c+ 1,

w =
(c− 1)(bd − 1)

b− 1
,

f =
⌊w
bd

⌋
,

n = mbd + j and n > (f + 1)bd.

Then

(∗) pvr(n, b, c) =
∑
i∈f+1

pvr(ibd + j, b, c, d)pvr(m− i, b, c)

where j ∈ bd is an integer.

Proof. This result may be seen by induction. Assume (∗) for all n ≤ m. Note that

n′ 6= n′′ implies that pvp(n′, b, c) and pvp(n′′, b, c) are disjoint. If s ∈ pvp(m − i, b, c)

and t ∈ pvp(ibd + j, b, c, d) then st ∈ pvp(n, b, c). This defines a concatenation map,

say g, from the set

A =
⋃

i∈f+1

pvp(ibd + j, b, c, d)× pvp(m− i, b, c)

to pvp(n, b, c) which is injective, therefore∑
i∈f+1

|pvp(ibd + j, b, c, d)||pvp(m− i, b, c)| ≤ |pvp(mbd + j, b, c)|.

and in other terms,∑
i∈f+1

pvr(ibd + j, b, c, d)pvr(m− i, b, c) ≤ pvr(n, b, c).

If u ∈ pvp(n, b, c) then one may factor u as u = st with |t| = d. In this case, there

exists an i such that s ∈ pvp(m − i, b, c), further i < f + 1 because w < (f + 1)bd.

Then mbd + j − (m − i)bd = ibd + j implies that t ∈ pvp(ibd + j, b, c, d). Thus every

element of pvp(n, b, c) has an inverse in A, hence g is bijective. Therefore

|pvp(n, b, c)| ≤
∑
i∈f+1

|pvp(ibd + j, b, c, d)||pvp(m− i, b, c)|.

Consequently pvr(n, b, c) =
∑

i∈f+1 pvr(ibd + j, b, c, d)pvr(m− i, b, c). �
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Example. Let b = 2 and c = 5, then pvr(n, 2, 5) is the 5th hyperbinary sequence.

Further d = 3, w = pve(444, 2) = 28, f = 3 and

X2,5 =



1 7 8 4

1 5 5 2

2 7 7 2

2 5 5 1

4 8 7 1

3 5 4 0

5 7 5 0

4 5 3 0


.

Note that (pvr(15− i, 2, 5))i∈4 = (9, 12, 8, 12) and

(pvr(120 + j, 2, 5))j∈8 = (205, 133, 182, 130, 200, 119, 169, 120) = X2,5 · (9, 12, 8, 12)

See Table 1 for a list of values of pvr(n, 2, 5) for 1 ≤ n ≤ 128.

Properties of Stern-like sequences

Lemma. The usual b-nary partition of n is lexicographically greatest among pvp(n, b, c)

when b ≤ c.

Proof. Let s be the usual b-nary partition of n. If |s| = 1 then pvp(n, b, c) = {s} and

the claim is true. Assume that the claim is true for all |s′| < m and that |s| = m.

Let s′ be such that s 6= s′ and n = pve(s′, b, c). If |s′| < |s| then s <
lex

s′ and there is

nothing to show. If |s′| = |s| then either s′(|s|) = s(|s|) or not. If |s′| = |s| then s

and s′ share a common prefix, namely y, that is,

s = yws and s′ = yws′ .

But then ws is a b-nary partition such that |ws| < |s|, and therefore the induction

hypothesis applies. Otherwise |s| = |s′| and s(|s|) 6= s′(|s|). If s′(|s|) < s(|s|) then

s′ <
lex

s and there is nothing to show. Finally if s(|s|) < s′(|s|) then pve(s′, b) > n since

s is the b-nary representation of n. That is, n ≤ s′(|s|)b|s|. This contradicts our choice

of s′ hence the usual b-nary partition of n is the lexicographically greatest element of

pvp(n, b, c) when c ≥ b. �

Lemma (Common suffix property). If r, s, t ∈ b<ω, |r| = |s|, r(i) 6= 0 and s(i) 6= 0

for all i ∈ |r| then Sb(pve(tr, b)) = Sb(pve(ts, b)).

Proof. This can be seen by induction on |r|. If |r| = 0 then t = t and the claim is

true. If |r| > 0 then r(0) 6= 0 and s(0) 6= 0 therefore Sb(tr) = Sb(>>tr) and Sb(ts) =

Sb(>>ts). Thus >>tr = t(>>r), >>ts = t(>>s) and |>>s| = |>>r| = |r|−1 < |r| therefore

the induction hypothesis applies and Sb(st) = Sb(>>st) = Sb(>>rt) = Sb(rt). �
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Corollary. Given n > 0, if the b-nary expansion of n contains no zeroes then Sb(n) =

1.

Proof. For n = 1 the assertion holds by definition. If n > 1 and its b-nary expansion,

say s, contains no zeros then >>s is a b-nary expansion which contains no zeroes and

is shorter. Therefore by the induction hypothesis Sb(n) = Sb(pve(s, b)) = 1. �

Corollary.

pvrf

(
1,

bn − 1

b− 1
+ 1,

bn+1 − 1

b− 1
− 1, b, b + 1

)
= (b− 1)n

Proof. This can be seen by induction on n. Define un = bn−1
b−1 . Define F (i, n) =

pvrf(i, un, un+1− 1, b, b+ 1). Note that F (1, 0) = 1. Therefore the induction hypoth-

esis is then that F (1, n) = (b− 1)n. Assume that this holds for all m ≤ n. Then for

all i such that un + 1 ≤ i ≤ un+1 and pvr(i, b, b + 1) = Sb(i) = 1 it is the case that

b - i. Otherwise Sb(i) would be the sum of two positive values and hence greater than

1. Further, for each such i and 1 ≤ j < b,

un+1 + 1 ≤ bi + j ≤ un+2

and by the recurrence, pvr(bi + j, b, b + 1) = Sb(bi + j) = Sb(i) = 1. Therefore

F (1, n + 1) = (b− 1)F (1, n) = (b− 1)n+1

and the induction hypothesis holds for n + 1. Thus

pvrf

(
1,

bn − 1

b− 1
+ 1,

bn+1 − 1

b− 1
− 1, b, b + 1

)
= (b− 1)n

for all n. �

Definition. (Layer and related values) Let ab,n = bn−1
b−1 + 1, bb,n = bn+1−1

b−1 and cb,n =

bn − 1. Note that bab,n = ab,n+1 + b− 2.

bab,n = b

(
bn − 1

b− 1
+ 1

)
= b

(
1 +

∑
i∈n

bi

)

= b +
n∑

i=1

bi = b− 2 +

(
1 +

∑
i∈n+1

bi

)

= b− 2 +

(
bn+1 − 1

b− 1
+ 1

)
bab,n = b− 2 + ab,n+1

Finally define the nth layer of the base b Stern-like sequence as

Layerb(n) =

bb,n∏
ab,n

str(Sb(i)).
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Lemma.

Layerb(n) = Layerb(n− 1)Xn

Proof. The equivalent result

(∗∗) i ≤ cn ⇒ Sb(i + ab,n+1) = Sb(i + ab,n)

may be seen by induction. In the base case Sb(1) = Sb(2) = 1 is true by definiton.

Assume that (∗∗) is true for n = m−1 and i = bm+ b−2 ≤ cn. Note that m < cn−1.

i = bm + b− 2 ≤ cm

bm + b− 1 ≤ cm + 1

m +
b− 1

b
≤ bm−1

m− 1

b
≤ cm−1

Then since m ∈ Z⇒ m ≤ cn−1.

Sb(i + ab,m+1) = Sb(bm + b− 2 + ab,m+1)

= Sb(b(m + ab,m))

= Sb(m + ab,m) + Sb(m− 1 + ab,m)

= Sb(m + ab,m−1) + Sb(m− 1 + ab,m−1) by IH

= Sb(b(m + ab,m−1))

= Sb(bm + bab,m−1)

= Sb(bm + b− 2 + ab,m)

Sb(i + ab,m+1) = Sb(i + ab,m).

�

Claim.

Fb(x) =
∑
i<ω

Sb(i)x
i =

∏
j<ω

∑
i∈b+1

xibj

Claim.

Fb(x) = Fb(x
b)
∑
i∈b+1

xi
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Proof.

Fb(x) =
∏
j<ω

∑
i∈b+1

xibj

=

( ∏
0<j<ω

∑
i∈b+1

xibj

)(∑
i∈b+1

xi

)

=

(∏
j′<ω

∑
i∈b+1

(xb)ib
j′
)(∑

i∈b+1

xi

)
Fb(x) = Fb(x

b)
∑
i∈b+1

xi

�

The case of S3(n)

Let an = 3n−1
2

+ 1, bn = 3n+1−1
2

and cn = 3n − 1.

Lemma. For all n ≥ 0 let 0 ≤ j ≤ an, then S3(cn + j) = S3(bn − j).

Proof. Proceed by induction on n. For n = 0 it is the case that a1 = 0, b1 = 2, cn = 1

and S3(2) = S3(1) which establishes the base case. Now consider the case when n > 0.

Let m and m′ be such that cn ≤ m ≤ m′ ≤ bn, and m+m′ = bn + cn. This condition

is equivalent to the premise of the assertion.

Assume m is not a multiple of 3 and define k, k′, r and r′ by m = 3k+r, m′ = 3k′+r′

where {r, r′} ⊂ 3. Therefore r+ r′ = 3 since m+m′ is a multiple of 3. Note that this

implies k + k′ = bn−1 + cn−1, hence by the induction hypothesis S3(k) = S3(k
′). By

the recurrence, S3(m) = S3(k) and S3(m
′) = S3(k

′), so S3(m) = S3(m
′).

On the other hand if m and m′ are multiples of 3 then there is an integer q such

that m = cn + 3q + 1 and m′ = bn − 3q − 1. Thus

S3(m) = S3(cn−1 + q + 1) + S3(cn−1 + q)

S3(m
′) = S3(bn−1 − q) + S3(bn−1 − q − 1)

and by the induction hypothesis

S3(bn−1 − q) = S3(cn−1 + q)

S3(bn−1 − q − 1) = S3(cn−1 + q + 1)

hence S3(m) = S3(m
′). Consequently, for all n ≥ 0 if 0 ≤ j ≤ an then S3(cn + j) =

S3(bn − j). �

Lemma. Let n = 3k + 2. Then S3(n) + S3(n + 2) = S3(n + 1).
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Proof. This is strictly a derivation based on the recurrence for S3(n).

S3(n + 1) = S3(3k + 3) = S3(3(k + 1))

= S3(k) + S3(k + 1)

= S3(3k + 2) + S3(3(k + 1) + 1)

S3(n + 1) = S3(n) + S3(n + 2).

�

Claim.

(3 + 1)n =
bn∑

i=an

S3(i)
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Table 1

n pvr(n, 2, 5)

1 1

2 2

3 2

4 4

5 3

6 5

7 4

8 8

9 6

10 9

11 7

12 12

13 8

14 12

15 9

16 17

17 12

18 18

19 14

20 23

21 15

22 22

23 16

24 28

25 19

26 27

27 20

28 32

29 20

30 29

31 21

32 38

33 26

34 38

35 29

36 47

37 30

38 44

39 32

40 55

n pvr(n, 2, 5)

41 37

42 52

43 38

44 60

45 37

46 53

47 38

48 66

49 44

50 63

51 47

52 74

53 46

54 66

55 47

56 79

57 52

58 72

59 52

60 81

61 49

62 70

63 50

64 88

65 59

66 85

67 64

68 102

69 64

70 93

71 67

72 114

73 76

74 106

75 77

76 121

77 74

78 106

79 76

80 131

n pvr(n, 2, 5)

81 87

82 124

83 92

84 144

85 89

86 127

87 90

88 150

89 98

90 135

91 97

92 150

93 90

94 128

95 91

96 157

97 104

98 148

99 110

100 173

101 107

102 154

103 110

104 184

105 121

106 167

107 120

108 186

109 112

110 159

111 113

112 192

113 126

114 178

115 131

116 203

117 124

118 176

119 124

n pvr(n, 2, 5)

120 205

121 133

122 182

123 130

124 200

125 119

126 169

127 120

128 208
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