A RELATION ON PARTIAL WORDS

DAKOTA BLAIR

Acknowledgements. This is joint work with R. V. Lewis, F. Blanchet-Sadri. This material is based upon work supported by the National Science Foundation under Grant No. DMS-0452020.

1. INTRODUCTION

Let \mathbb{N} denote the natural numbers, and associate an element $n \in \mathbb{N}$ with its corresponding ordinal number. A partial function from X to Y is a function $f: X' \to Y$ such that $X' \subset X$ is the domain of f. Let the set of partial functions from X to Y be written as $Y^{(X)}$. Denote the domain of $f \in Y^{(X)}$ as D(f) and the set of holes of f as $H(f) = X \setminus D(f)$. Given $n, m \in \mathbb{N}$ let $k = n \pmod{m}$ be modular reduction of n modulo m, that is, $0 \leq k < m$ and $k \equiv n \pmod{m}$.

Definition 1.1 (Partial Words). A partial word u of length |u| = n on an alphabet A is an element of $A^{(n)}$.

With this definition, $A^* = \bigcup_{n \in \mathbb{N}} A^{(n)}$ forms a monoid under concatenation with identity element ϵ , the empty word.

Example 1.1. The partial word $c\Diamond b$ is an element of $\{a, b, c\}^{(3)}$.

Definition 1.2 (Containment). A partial word u is said to be **contained** in v, written $u \subset v$, if $|u| = |v|, D(u) \subset D(v)$ and u(i) = v(i) for all $i \in D(u)$.

Example 1.2. The partial word $c\Diamond b$ is contained in both cab and cub.

Definition 1.3 (Compatibility). A partial word u is compatible with v, written $u \uparrow v$, if there exists a partial word w such that $u \subset w, v \subset w$.

Example 1.3. Extending the previous example, $c \diamond b \uparrow cab$ and $c \diamond b \uparrow cub$, but $cab \uparrow cub$. Therefore the \uparrow relation is reflexive and symmetric, but not transitive. Another example is $a \diamond bbc \uparrow aab \diamond c$.

Definition 1.4 (Periodic). A partial word u is p-periodic if $i \equiv j \pmod{p}$ and $i, j \in D(u)$ implies u(i) = u(j).

Example 1.4. The word abcabc is 3-periodic, and the partial word $abab\Diamond b$ is 2-periodic.

Date: March 4, 2011.

Definition 1.5 (Residual Partial Words). For a partial word u and $i, p \in \mathbb{N}$, let i' be $i' = i \pmod{p}$ and $k \in \mathbb{N}$ be the greatest integer such that i' + kp < |u|. Then the *i*th residual partial word modulo p of u, denoted $u \begin{bmatrix} i \\ p \end{bmatrix}$, is defined to be

$$u\begin{bmatrix}i\\p\end{bmatrix} = \prod_{j=0}^{k} u(i'+jp) = u(i')u(i'+p)u(i'+2p)\cdots u(i'+kp)$$

Example 1.5. Let $u = (prime)^5$. Then $u \begin{bmatrix} 0 \\ 6 \end{bmatrix} = prime$. If $v = (a \Diamond b)^3$ then $v \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \Diamond \Diamond \Diamond$.

2. The relation
$$u^m \uparrow v^n$$
 on partial words

Lemma 2.1. Let u and v be partial words, such that for $m, n \in \mathbb{N}$ with gcd(m, n) = 1 $u^m \uparrow v^n$ and p = |u|/n = |v|/m. If there exists an i such that $0 \le i < p$ and $u \begin{bmatrix} i \\ p \end{bmatrix}$ is not 1-periodic then $D\left(v \begin{bmatrix} i \\ p \end{bmatrix}\right)$ is empty.

Lemma 2.2. If u is a partial word, $i, m, p \in \mathbb{N}$ and $0 \leq i \leq p$ then

$$u^{m} \begin{bmatrix} i \\ p \end{bmatrix} = u \begin{bmatrix} i \\ p \end{bmatrix} u \begin{bmatrix} (i - |u|) \\ p \end{bmatrix} u \begin{bmatrix} (i - 2|u|) \\ p \end{bmatrix} \cdots u \begin{bmatrix} (i - (m - 1)|u|) \\ p \end{bmatrix}$$
$$= \prod_{j=0}^{m-1} u \begin{bmatrix} i - j|u| \\ p \end{bmatrix}$$

Definition 2.1 (Good Pair). A pair of partial words (u, v) is a **good pair** if for all $i \in H(u)$ the word $v^n \begin{bmatrix} i \\ |u| \end{bmatrix}$ is 1-periodic and for all $i \in H(v)$ the word $u^m \begin{bmatrix} i \\ |v| \end{bmatrix}$ is 1-periodic.

Example 2.3. The partial words $a\Diamond b$ and acbadb do not form a good pair.

Theorem 2.4. If (u, v) is a good pair of partial words, m and n are positive integers such that $u^m \uparrow v^n$ with gcd(m, n) = 1 then there exists a partial word z such that $u \subset z^n$ and $v \subset z^m$.

Proof. Since gcd(m, n) = 1, there exists p such that |u|/n = |v|/m = p. Now assume there is an integer i such that $0 \le i < p$ and $u \begin{bmatrix} i \\ p \end{bmatrix}$ is not 1-periodic. By Lemma 2.1, $i + jp \pmod{|v|} \in H(v)$ for all j such that $0 \le j < m$. Then the assumption that (u, v) is a good pair implies $w = u^m \begin{bmatrix} i + jp \\ |v| \end{bmatrix}$ is 1-periodic for all j, and therefore $w \subset a^n$ for some letter a. Note also that |u| = np implies |w| = |u| = n. To show $u \begin{bmatrix} i \\ p \end{bmatrix}$ is a permutation of w will be sufficient to complete the proof. By Lemma 2.2

$$w = u^{m} \begin{bmatrix} i+jp\\mp \end{bmatrix} = \prod_{k=0}^{m-1} u \begin{bmatrix} i+(j-k|u|)p\\mp \end{bmatrix}$$
$$= u \begin{bmatrix} i+jp\\mp \end{bmatrix} u \begin{bmatrix} i+(j-|u|)p\\mp \end{bmatrix} u \begin{bmatrix} i+(j-2|u|)p\\mp \end{bmatrix} \cdots u \begin{bmatrix} i+(j-(m-1)|u|)p\\mp \end{bmatrix}.$$
that $i+ip-k|u| = i+(j-kp)p$ and since $\gcd(m,p) = 1$

Note that i + jp - k|u| = i + (j - kn)p and since gcd(m, n) = 1

$$\{j - kn \pmod{m} \mid 0 \le k < m\} = \{0, 1, \dots, m - 1\}.$$

Therefore define $j_k = j - kn \pmod{m}$, so

$$w = u^m \begin{bmatrix} i+jp\\mp \end{bmatrix} = \prod_{k=0}^{m-1} u \begin{bmatrix} i+j_kp\\mp \end{bmatrix} = u \begin{bmatrix} i+j_0p\\mp \end{bmatrix} u \begin{bmatrix} i+j_1p\\mp \end{bmatrix} \cdots u \begin{bmatrix} i+j_{m-1}p\\mp \end{bmatrix}$$

Since w is 1-periodic, there is a letter a such that for $0 \leq k < m$ and some $m_k \in \mathbb{N}$

$$u \begin{bmatrix} i+j_kp\\mp \end{bmatrix} \subset a^{m_k}.$$

Now observe that

$$\left\{k + lm \middle| 0 \le k < m, 0 \le l < n - k/m - i/mp\right\} = \{0, 1, \dots, n - 1\}$$

where the condition on l comes from the requirement that the sum i + kp + lmp be less than |u| = np. Therefore the partial word w is a permutation of $u \begin{bmatrix} i \\ p \end{bmatrix}$. That is, if $\sigma \in S_n$, the symmetric group on n,

$$w = u^m \begin{bmatrix} i + jp \\ mp \end{bmatrix} = \prod_{k=0}^{m-1} u \begin{bmatrix} i + j_k p \\ mp \end{bmatrix} = \prod_{h=0}^{m-1} u (i + \sigma(h)p) \subset a^n$$

But w is 1-periodic, and therefore so is $u \begin{bmatrix} i \\ p \end{bmatrix}$ which contradicts our choice of i. Then $u \begin{bmatrix} i \\ p \end{bmatrix}$ is 1-periodic for all i, so u is p-periodic. Thus there is a partial word z_u of length p such that $u \subset z_u^n$. Repeating the argument for v yields a partial word z_v of length p such that $v \subset z_v^m$. Then $u^m \uparrow y^n$ implies that $z_u^{mn} \uparrow z_v^{mn}$ and therefore $z_u \uparrow z_v$. Finally $z = z_u \lor z_y$ is a partial word such that $u \subset z^n$ and $v \subset z^m$.