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We investigate the classical dynamics of the problem of two centers and a finite dipole by means of a
common Hamiltonian model. Conditions for trapped orbits are determined first by a qualitative analysis of the
effective potential, revealing two types of bifurcation in the two-center problem as a control parameter passes
through a critical value u.. For equal masses there is a pitchfork bifurcation, for unequal masses a tangent
bifurcation. Separating the common Hamiltonian in elliptic coordinates shows that the third invariants for the
two-center problem and the finite dipole are isomorphic in scaled variables. Explicit trapping conditions are
then found in terms of the coefficients of two quartics. A critical-point analysis for the finite dipole shows that
a potential well exists for all values of scaled angular momentum below the same critical value w., at which
the elliptic point runs off to infinity. In this case the existence of the third invariant does not confine any orbits
not already trapped by energy conservation. A similar analysis of the effective potential for the point dipole
shows that the only trapped orbits besides those impacting the origin are unstable zero-energy trajectories lying

on a sphere.

PACS number(s): 33.15.Ry, 03.20.+i, 95.10.Ce, 03.65.Sq

L. INTRODUCTION

Among the oldest and most important problems in dy-
namics must surely be counted the problem of two fixed
centers, which finds myriad applications in celestial mechan-
ics [1-8] as well as in atomic physics [9—13]. First investi-
gated by Euler in 1760, the two-center problem may be
viewed as a limiting case of the restricted three-body prob-
lem, in which a particle of negligible mass moves in the
gravitational field of two massive bodies. As Euler showed,
this system enjoys a privileged position in mechanics, inas-
much as it is completely integrable in elliptic coordinates.
The solutions were discussed in detail by Legendre and by
Jacobi [1], and the possible meridional motions exhaustively
classified by Charlier [2] and Deprit [3]. Applications to sat-
ellite motion about an oblate planet were discussed by Ti-
moshkova [5] and Aksenov [6]. More recently, Chan-
drasekhar [7] investigated the scattering of radiation by two
black holes with electrostatic repulsion holding the two black
holes fixed. Contopoulos [8] subsequently treated the nonin-
tegrable relativistic motion of particles and photons near two
black holes.

In atomic physics applications the role of the gravitational
field is played by the electrostatic field of two charges; the
equations of motion are entirely isomorphic. This system
was studied by Bohr [9], Pauli [10], Fermi [11], Born [12],
and Teller [13], in connection with bound states of the mo-
lecular ion H . Of these, the most definitive is that by Pauli,
based on his Ph. D. thesis. Although some of his conclusions
regarding possible quantizable states are incorrect in the light
of modern wave mechanics, his treatment of the classical
motion is impressive. More recently, Strand and Reinhardt
[14] have employed uniform Einstein-Brillouin-Keller quan-
tization to determine accurate low-lying states of H; . Here
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conditions for classical trapped orbits are needed to define
quantizable action integrals.

Reversing the sign of one of the charges gives the finite
dipole, which has been studied extensively by Turner and
Fox [15-17]. These authors show that trapped orbits exist,
but do not determine the explicit necessary conditions on
physical parameters. If one lets the separation (2a) of the
charges to go to zero while simultaneously increasing the
charge g such that the dipole strength p =2agqg remains con-
stant, one obtains the familiar point dipole [18], which is a
member of the class of integrable Stickel potentials [19,20].
Fox has shown that the only trapped orbits for the point
dipole lie on spherical surfaces, so that the only quantal
bound states correspond to circular orbits. We confirm this
result but find that all such orbits are unstable. One important
application of these calculations is the determination of the
minimum dipole moment required to trap an electron.

Our primary aim in this paper is to derive explicit alge-
braic conditions for the existence of stable three-dimensional
trapped orbits for each system. Such orbits possess well-
defined classical actions, which form the basis for the semi-
classical quantization of atomic systems. We first examine
the Morse structure of the effective potential, which forms a
two-dimensional well which can confine orbits in the pres-
ence of closed equipotentials. This approach reveals impor-
tant features of the motion difficult to discover in the sepa-
rated equations. Performing a critical-point analysis of the
effective potential for the two-center problem, we obtain the
critical parameter for the bifurcation of circular orbits, pre-
viously found only by approximate methods [11,15]. This is
carried out semianalytically for the asymmetric case of un-
equal masses, for which there is a saddle-node bifurcation,
and the equal-mass case, for which the existence of a sym-
metry line results in a pitchfork bifurcation. These results
apply to H2+ (equal charges) [14], as well as to asymmetric
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FIG. 1. Test particle moving in the gravitational field of two
large masses located at fixed positions z= *a. The same diagram
describes an electron moving in the electric field of two fixed posi-
tive charges,

molecular ions such as HeH?™, which has recently been
found to possess stable bound states [21]. A similar critical-
point analysis for the finite dipole reveals the existence of a
potential well, but only for values of the control parameter
less than a critical value identical to the bifurcation threshold
for the problem of two centers. This critical value is identical
to that previously obtained for the point dipole [16], and
shows that classical electrons may be trapped by an arbi-
trarily small dipole moment. These theoretical predictions
are well confirmed by numerical orbit calculations.

The reader may question the value of studying the effec-
tive potential in cylindrical coordinates when a full solution
of the separated equations is available in elliptic coordinates.
This approach not only yields increased physical insight, but
also provides a method of attacking related nonintegrable
systems, such as H; in an axial magnetic field [22]. Another
example is the nonintegrable Stark-Zeeman problem [23,24],
in which a Rydberg atom is exposed to parallel electric and
magnetic fields. Here the effective potential leads directly to
a saddle-point criterion for field ionization. Furthermore,
many of the bifurcations reported here are quite transparent
in cylindrical coordinates and quite difficult to discover in
the separated equations.

Even when the equipotential for a given energy is open,
the existence of a third invariant can confine orbits. Carrying
out the usual separation in elliptic coordinates, we find that
the resulting equations for the two-center and finite dipole
problems are isomorphic. Consequently the trapping condi-
tions are very similar in scaled variables. As in the closely
related Stark problem [12,24], a basic question of some im-
portance is, for what physical parameters do bound states
exist? For the systems under consideration here, the answer
is given by the reality of the zeros of two quartic polynomi-
als formed from the third invariant, whose coefficients are
functions of these parameters. This calculation is performed
for the case of equal masses in the problem of two centers as
well as the finite and point dipoles. The resulting trapping
region for three-dimensional orbits is a complex, simply con-
nected volume in the space of the three invariants. The case
of unequal masses is more complicated and will be treated
separately [25].

II. HAMILTONIAN MODEL

Consider two large equal masses M lying on the z axis at
distances *a from the origin, as depicted in Fig. 1(a). The
case of unequal masses is also of interest and will be treated
in Sec. III. The Hamiltonian for a test particle of mass
m<<M moving in the mutual gravitational attraction of the
two large masses is, in cylindrical coordinates (p, ¢,z),
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where G is the universal gravitational constant and
ri=p’+(z—a)?, ri=p’+(z+a)’, (22

and p,=mp, p,=mz, and pd,:mpz(ﬁ Similarly, for a test
charge —g moving in the electrostatic field of two massive
particles of charge = Q [Fig. 1(b)]:

1

2
2 2
H=5—(p,*p?) 3mp? = (2.3)

where o= *=1. Note that no restriction is made concerning
the magnitude of ¢g/Q. After straightforward scalings, both
systems may be described by the common Hamiltonian

1 m o 1
2 2
H= — + LA — .
2(pp Pz) 2p2 ry rl! (24)

where w= pfb/a2 and a=1 in (2.2). The point dipole is ob-
tained by letting Q—, a—0 in such a way that the dipole
moment p =2a( remains constant, and will be discussed in
Sec. V.

The possible motions in each case are limited by the
structure of the effective potential

(2.5)

which depends (for fixed o) on the single control parameter
m. That is, in the reduced system the particle moves in the
two-dimensional potential well U(p,z). For a typical nonin-
tegrable system, that is the whole story; energy conservation
implies that an orbit of energy E<<E|, is confined if and only
if the level sets (zero velocity curves) of U=E are closed.
For integrable systems the addition of a third global invariant
further constrains the motion so that confinement is possible
even in an open potential well. The form of the various zero-
velocity curves so generated will be discussed in detail in
Secs. III-V. Before doing so let us set the stage by demon-
strating the separability of the Hamiltonian (2.4), by a
method somewhat more direct than traditional treatments.
Introducing confocal elliptic coordinates (&, ), such that

ri=é+n, r,=§f—mn, (2.6)

it follows that
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p*=(&-1)(1~7n"), z=—én, 2.7) a8 \/(52—1)(1—7;2)@ )
Pp=7—= 7_ .72 Pe— NPyl
with inverse ?ap &7 ¢ 7
=3[ Vo' +(z— 1)+ Vp*+(z+1)? ], )
dl ] P.=5 =" 76‘2_—772[7/(52‘1)195'*'5(1 — 7))
=3[ VpT+ = 12— p*+(z+1)?]. (28 (2.10)
Note that £&=1, |n|<1, so that £€—1=0, 1—%*=0. The  Hence the kinetic terms are
momenta canonically conjugate to (§,7) are efficiently
found from the generating function s 1 5 )
Potpi=m——=[(&€—1pe+(1—7)p3]l. (2.11)
S(p.z,p¢.py) = E(p.2)pe+ 1(p,2)p s (2.9) SRR ’
from which The potential energy is easily evaluated:
]
o 1 o 1 —(1+0)é+(1-0)p
= — = —— , (2.12)
ry i E—m &+ &
and therefore
2_ .2 (g2 2 2y .27 | ! !
(&= )H=3[(&-Dpe+(1=7n7)pyl+zu fszrmf —(1+0o)é+(1-0)7, (2.13)

which is manifestly separable. The separation constant is a
function of the dynamical variables and constitutes a third
invariant independent of the total energy H and scaled angu-
lar momentum . Note that this Hamiltonian is invariant to
the transformation o— — o, £« 7. It follows that the prob-
lem of two centers and the finite dipole are described by the
same scaled equations. In the following two sections we
shall exploit this symmetry in determining trapping condi-
tions for each case.

III. TWO FIXED CENTERS

The problem of two fixed centers has a long and distin-
guished history, attracting the attention of many celebrated
mathematicians, despite the lack of the ““services of an Arch-
angel” to hold the two massive bodies at a fixed distance [7].
Thus its primary practical interest in celestial mechanics is as
a limiting case of the three-body problem, affording some
insight into its byzantine complexities.

We begin by carrying out a critical-point analysis of the
effective potential, which constitutes a two-dimensional well
for the reduced motion. In this picture the critical points
represent circular orbits, which are stable or unstable de-
pending on the type of the associated critical point. This is
first carried out for the symmetric case of equal masses,
which possesses equatorial equilibria which bifurcate via a
pitchfork bifurcation into nonequatorial equilibria as the
scaled angular momentum u decreases through a critical
value. The asymmetric case (unequal masses) is quite differ-
ent and will be treated separately [25]. Here there are no
equatorial equilibria, and a single nonequatorial elliptic criti-
cal point exists for sufficiently large . As u decreases, a
second elliptic point and a hyperbolic point are born via a
tangent bifurcation. Bifurcation thresholds are given explic-

itly for equal masses and as the solution of an implicit equa-
tion for unequal masses.

After working out the stability conditions and bifurcation
thresholds, we examine the role of the third invariant in con-
fining particles and its relationship to the potential well
U(p,z). This leads to a pair of quartic polynomials which
form the zero-velocity curves for the third invariant. Analyz-
ing these polynomials gives a pictorial classification of
trapped orbits in terms of a set of inequalities among the

J

FIG. 2. Level sets of the potential energy V(p,z) for the two-
fixed-center problem with equal masses.
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FIG. 3. Level sets of the effective potential U(p,z) for the sym-
metric two-fixed-center problem for control parameters (a) u=1.5
and (b) 1.6. A double well is formed when w decreases below
M=1.5396.

polynomial coefficients, and thereby the physical parameters
E, p, and a.

A. Critical-point analysis: equal masses

Figure 2 depicts level sets of the potential energy

1

V(P»Z)= - —r—;— ;.2_’

(3.1)

which is useful for analyzing meridional orbits («=0). For
three-dimensional orbits it is necessary to examine the effec-
tive potential
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(3.2)

Figure 3 depicts level sets of U for u=1.5 and 1.6, showing
clearly the formation of a double well as w is reduced to
about w=1.54. The elliptic critical point at the center of
each well represents a stable circular orbit, while an unstable
circular orbit exists at the saddle point in Fig. 3(a). For
u=0 there is a double well centered at each pole at
z=*a, while the origin is an unstable equilibrium point. A
similar bifurcation occurs in the relative motion of two ions
in a Paul trap [26,27]. Although Fermi [11] gave an equiva-
lent condition for the existence of nonequatorial circular or-
bits, he did not supply a derivation or mention the existence
of a double well. Turner derived Fermi’s condition, but only
approximately, by means of a Taylor-series expansion.

Pauli classified three-dimensional orbits as ‘‘symmetric,”
“antisymmetric,” and ‘“‘equatorial.” In our nomenclature
symmetric orbits are those trapped in a single well, while
asymmetric orbits are those trapped in one half of a double
well. A third class are all the untrapped orbits (E>0). In
addition we may distinguish a subclass of orbits trapped in
both halves of a double well.

We now derive an explicit condition for the bifurcation
seen in Fig. 3. The critical points of U are given by the
simultaneous solutions of

M 1 1
U,=——S+p|l—5+—=|=0,
SR

(3.3)

z—1 z+1

U=—5+—73 =0
1 2

For x=0 there is a single static equilibrium at the origin,
which is easily seen to be unstable (Fig. 2). For x>0 there
are two types of relative equilibria (circular orbits) [28].
Equatorial orbits: When z,=0, U,=0, so that
ri=r,=+/p*+ 1. The equilibrium radius is then given by

2p*=u(p*+1)>"? (3.4)

which possesses a single positive solution py(u) for all posi-
tive w. This solution may be found as the positive zero of a
quartic in x = p2.

The type of each critical point is determined by the sign
of the Hessian determinant

(3.5)

For Ay<<0, U has a saddle at (pg,z¢); for Ay>0 there is a
local minimum if U,,>0 and a local maximum if U,,<0. A
critical point changes type when A, passes through zero.
Explicitly,
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FIG. 4. Locus of relative equi-
libria (circular orbits) for the sym-
metric two-center problem and the
finite dipole. For two centers
- (lower curve) there exists a single
equatorial equilibrium orbit for all
M>p, at po(p) given by (3.4).
N When u decreases below . this
orbit undergoes a pitchfork bifur-
cation, giving birth to two sym-
metric nonequatorial circular or-
bits at (pg,zo) given by (3.10),
and an unstable circular orbit at
po(m) given by (3.4). As u—0,
po—0 and zy— 1. For the finite
dipole (upper curve) a single rela-
tive equilibria exists for all u.

w.=53=1539%..., (3.9)
and E,= — $\/3=—0.7698. That is, when x> . 3 a single
elliptic point at py(w) given by (3.3); when u decreases
through w. this point becomes hyperbolic (unstable), giving
birth to a symmetric pair of nonequatorial elliptic fixed
points. The location pg(u), zo(u) of the nonequatorial fixed
p(z)ints may be found explicitly by first solving Eq. (3.3b) for
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When z,=0, U,,=0, and (3.6) reduces to (r=r;=r,)

2 3u
Upp=r—5(r2—3p2)+ ik

3.7)
2 2
Uzz:;—S‘(r —-3).

Note that since V is harmonic, we have, at equilibrium,

UP 2
Uppt —2+ U= =202, (3.8)

P P

where w is the orbital frequency.
For stability we require U,,, A=U,,U,,=0. Thus

stability comes down to requiring that

U,,=0=ry=3=py= 2. Solving (3.4) for x we find that
A=0 for u=pu,., where

2

_(1+Z)2(1 _Z)2/3_(1_Z)2(1+Z)2/3

+2)P-(1-2)7 (3.10)

The corresponding value of u is then given by Eq. (3.3b).
Figure 4 shows the locus of elliptic fixed points (stable cir-
cular orbits) in the p-z plane as given by (3.10), along with
the corresponding locus for the finite dipole. Note that
z—1 as p—0, so that as u—0 the equilibrium tends toward
the source at (0,1). Explicitly, near this point py~u and
zo~1—1u>. For large z, po~+/2zo. The stability of these
circular orbits has been verified by numerical evaluation of
the Hessian determinant.

Normal modes

It is also of interest to calculate normal mode frequencies
for the stable equilibria in Fig. 4. For example, in H; these
libration frequencies may be excited by microwave radiation
and correspond to quantum-mechanical states with small el-
liptic quantum numbers. In general, for positive definite ki-
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207 =TeH# = (Tr.7%)*— 4 det 7, (3.13)

2
1.8 | where
16 | 2 3u
ni Tr.%:Upp’f‘UZZ:—r—S“r ? (3]4)
Q
12k Unfortunately, A =det.7 does not simplify appreciably. For
equatorial circles the normal modes lie along the p and z
1E axes, but tilt somewhat for the nonequatorial equilibria. The
variation of Q). with u is depicted in Fig. 5. Note that ) _
08 vanishes for = u; for u> u. this mode is purely vertical.
o6 The second mode, €2, , decreases monotonically with in-
0.4 T T T T
02} 2+ i
z

FIG. 5. Normal-mode frequencies for the symmetric two-center
problem as a function of w. The slow mode ) _ drops rapidly to
zero when u— . . 0r

netic energy the normal mode frequencies (). are given by
the eigenvalues A = Q? of the Hessian matrix 7%= DU, i..,

det(#—AI)=0 (3.11)
or 2k
A*—Tr.H#NA +det#=0 (3.12) .
so that
T T T T 2
2+ i
z 1k
- z
ol
A+
2+
) 0
0 0.5 1 1.5 2 2.5
P FIG. 7. Level sets of the effective potential U(p,z) for two fixed
centers with mass ratio y=2 and (a) ©#=0.5 and (b) u=1. A
FIG. 6. Level sets of the potential V(p,z) for the asymmetric double well is formed via a tangent bifurcation when w is decreased

two-center problem with mass ratio y=M,/M . below u,.=0.742.
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creasing u, and is purely radial for 4> u.. The two modes
are never degenerate, except perhaps asymptotically for large
or small x. For moderate x4 we may therefore speak of a
slow mode and a fast mode. It would be interesting to see
whether these modes could be excited in laboratory experi-
ments.

B. Critical-point analysis: unequal masses

The potential energy (3.1) is readily generalized to en-
compass unequal masses by means of the dimensionless
mass ratio

y=M,IM,, (3.15)
so that
Iy
wmw——;—g. (3.1a)

Figure 6 shows the form of the potential contours for y=2. It
is then straightforward to modify the algebra of Sec. III A.
Thus the equilibrium conditions on the effective potential
become

M Y
U,=-"=+p|—=+—3|=0,
? P’ p”l r%
z—1 z+1
U=—7F+y—73=0 (3.3a)
1 2

For y#1 there are clearly no equatorial equilibria. In order
to gain a preliminary view of the structure of U(p,z), Fig. 7
plots level sets of U for y=2 and ©=0.5 and 1. As in the
case of equal masses there is a single elliptic fixed point for
large w. Now, however, a double well is formed through a
tangent bifurcation at a critical control parameter

M= pe(Y).

2

1 0% 2y
A(px):;?pﬁ—9(z—1ﬁ]+;§p§—9(z+1ﬂ]+;ig[ﬁr§—9u2—1ﬂ+9p%zl—n]=o

Solving this complicated equation numerically for z.., p. and
. follow straightforwardly by back substitution. Although
we have not been able to effect a complete analytic solution
to this problem, we have proven several properties of the
locus of equilibria. It is shown in the Appendix that for ar-
bitrary smooth axisymmetric potentials u reaches an extre-
mum at the bifurcation point, which for the two-center prob-
lem is a local maximum.

C. Particle trapping

We now return to the general question of particle trap-
ping, which we investigate for the case of equal masses. The
case of unequal masses requires using Sturm’s theorem [29]
and will be reported elsewhere [25]. We have seen that for
m<pu. the effective potential has a single well; all particles

4477

The general features of these potential curves can be un-
derstood from the locus of equilibria I', which follows from
the second of Egs. (3.3a):

2_(1+Z)2(1___Z)2/3_,y2/3(1~z)2(1+z)2/3
- 72/3(1+Z)2/3_(1"Z)2/3

(3.102)

Figure 8 plots I' for y=2, revealing the existence of two
branches to the equilibrium locus. The lower branch I'™
(zp<0) emanates from the point zo= —1, exists for all
m>0, and is asymptotic to the line

y—1

Py (3.16)

lim zo=—
po—®

The upper branch r+ (zp>>0), on the other hand, exists only
for u less than a critical value depending on y. The upper
part of this loop traces the stable critical point, terminating at
z9(0)=+1, while the lower half traces the unstable point,
terminating at

Vy

lim zo( po) = ~——
py—0 Jy+1

(3.17)
which is just the location of the x point in Fig. 6. It should be
noted that while there is a point on I' where the slope is
vertical (U,,=0), this point does not coincide with the bi-
furcation point, as indicated in Fig. 8. Since A<<0 when
U,,=0 it follows that the former point lies on the unstable
part of I'". A similar locus occurs for the Stark problem
[24], in which elliptic and hyperbolic fixed points annihilate
in a tangent bifurcation.

The critical value of x4 may be found by the following
procedure: first eliminate w by substituting u(p,z) from the
first of Egs. (3.3a) into U ,,. Then substitute p? from (3.10a)
into A(p,z)=U,,U,,—U;_, which may be simplified to

pz?

(3.18)

with E<O are confined, while those with E=0 escape to
infinity. We call this global trapping. For w> u,. there is a
double well separated by a saddle point on the p axis. In this
case a particle with E<E| is forever confined in one of the
two wells, a situation we shall refer to as local trapping. The
analogous effect in the Stark problem is known as saddle-
point confinement [24]. Just as in the Stark problem, the
existence of a third invariant can confine particles (here only
locally) even when E>E ..
The saddle-point energy is

2

Veg+1 2P0
where p, is the saddle-point radius, given numerically by
(3.4). For u<1, (3.4) has the expansion

)7
:—ZF@%+U, (3.19)
0
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FIG. 8. Loci of relative equilibria for the asymmetric two-center
problem for y=2. A stable critical point moves along the lower
branch I'” and 1is asymptotic to the horizontal line
zo=—(y—1)/(y+1) as po—. The upper branch exists for
0<u<pu, and consists of two subbranches: the lower twig traces
the x point and the upper half-loop the upper O point.

3 p\ 12
Po*(ﬂ«/z)m[] + 5(5) , (3.20)

so that
E~—1-2ul2. (3.21)

Figure 9 illustrates typical trapped and untrapped orbits in
the double well for w=1.5, for which py=1.396 and
E,=-0.779 83. In Fig. 9(a), with E=—0.779 75>E,, the
particle is confined by the third invariant to the upper half of
the potential well labeled U=E. In Fig. 9(b), with the same
energy, but a different value of the third invariant, the orbit is
able to explore the entire well. These orbits demonstrate the
ability of the third invariant to overrule the topology of the
effective potential, constraining the orbit to one half of a
single well, even when the particle possesses sufficient en-
ergy to explore the entire well. In this section we determine
the precise connections between the critical-point analysis of
Sec. III B and the effects of the third invariant «, which
imposes its own double-well structure.

Just as energy conservation limits the region of physical
space available to a particle of energy E, so does the con-
stancy of the third invariant yield its own set of zero-velocity
curves. To see this, let us rewrite the Hamiltonian (2.13) in
separated form

L& -1)pi+ 2(5—2’11—)—1552—2& —a,
(3.22)

“
1 2y ,.2 2

S _77 D +—'+E77—+0’
2(1 ) 7201 772) ’

0.4} .

02 4

1.32 1.34 1.36 1.38 1.4 1.42 1.44

04 .

-0.2 +

1.32 1.34 1.36 1.38 14 1.42 1.44
p

FIG. 9. Trapped and untrapped orbits in the double well of the
symmetric two-center problem. Energies are in scaled atomic units.

where the separation constant « is the third invariant. Erick-
son and Hill [30] have shown that the third invariant is
equivalent to the geometric quantity

Q=L,-L,+2(cosf;—cosb,), (3.22a)
where L; and L, are the angular momenta of the test particle
with respect to the two source masses, and 6; and 6, are the
respective central polar angles of r; and r,. An elegant gen-
eralization of this result is given by Coulson and Joseph [31],
who point out the connection with the Runge-Lenz vector for
the Kepler problem. It is readily shown that
Q=|E|+a, (3.22b)
a relation which will prove useful in classifying orbits.
Since the first term in each of equations (3.22) is non-
negative, it follows that
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2(§2_1)—E§2—2gs—a,

(3.23)

it 2
+En‘=+a,
20=7) "

which correspond precisely to U<E. For negative-energy
trapped orbits, inequalities (3.23) are equivalent to

F(§)=¢*—AL—BE+AE—C=0,
G(n)=174-—B772—CS0, (3:24)

with

A= po1- % o=t ( “) (3.25)
=i, =1— i, =r—=la—=]|. @G
|E |E| |E| 2

Thus, we have the following.

Proposition 1. An orbit with parameters (E,u,q®) is
trapped iff (if and only if) both (i) F(£) is negative between
two positive zeros (&;,&,) with £&,=0 and &,=1, and (ii)
G(7m) is negative between two zeros (7,,7;), with 7,
e[—1,1] and 7%,=0.

This much may be found in equivalent form in the treat-
ments of Charlier [2] and Pauli [10]. Pauli derived algebraic
trapping conditions for equal masses by expressing the coef-
ficients A, B, and C as functions of the zeros of F and G.
Charlier’s analysis allowed unequal masses and arbitrary en-
ergy but was limited to meridional orbits. Strand and Rein-
hardt [14] also carried out an orbital taxonomy for E<<0 and
w=0. For comparison, their parameter M? is equivalent to
our u, and their —¥ to our a. We shall obtain trapping
conditions by a somewhat more geometrical approach. In
addition, our method yields explicit conditions for transitions
between the various classes of trapped orbits. We begin with
a qualitative description of Charlier’s four classes of trapped
meridional orbits.

Meridional orbits

When ©=0, all orbits lie in a plane of constant ¢. Al-
though such planar orbits have been thoroughly investigated
we briefly discuss them in order to set the stage for the more
complicated three-dimensional case. We also emphasize the
connections between orbital topology and functional proper-
ties of F and G. Our results are summarized in Fig. 10,
which depicts Charlier’s four classes of trapped meridional
orbits, along with the corresponding plots of F(&) and
G(n). Following this qualitative description we derive ex-
plicit conditions for each of these classes and transitions be-
tween them.

The first type is a pendular libration along the z axis, with
£=0. There are two subclasses, one with 7 running between
limits 7n,.,,=*1 and a second with % running from
| 7minl <1 t0 7max=*1. Thus an orbit in either of these
classes eventually collides with one of the masses. While the
second subclass is stable, an orbit in the first is not, as it must
pass through the hyperbolic point at the origin. The second
class (‘“‘planetary”) occupies an annular region between two
concentric ellipses §=¢; and &,, with % assuming all pos-
sible values in [ — 1,1]. The motion is conditionally periodic,
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with a typical orbit ergodically filling the annulus. When
&,=¢, this region shrinks to a single ellipse with foci at
z==1. The third class, dubbed “satellite” orbits by Char-
lier, occupies one of two regions bounded by a single ellipse
&= ¢, and two branches of an hyperbola 7= * 5, . Again the
motion is ergodic save for a denumerable set of periodic
orbits. The fourth class (“lemniscates”) fills a region
bounded by a single ellipse £€=¢,.

Let us now derive algebraic conditions on « and E for
each of these classes. In general, satisfying the conditions on
the zeros of F and G implied by Proposition I requires
Sturm’s theorem [29]. For equal masses, however, the con-
nections among the polynomial coefficients permit a simpler
analysis. A further simplification occurs for =0, where
both F(£) and G(#) factor:

F(O=(&—-1)(€—A+C)= (- 1)F(§),

G(m)=(7"=1)(7*+C).

Thus F(£1)=G(x1)=0 and F(0)=G(0)=—a/|E|,
while lim;_, .. F(£)= lim,_,..,G(n)=+».

(i) Pendular orbits. An orbit lies on the z axis iff
&=+ 1. This requires that F(£) have a minimum or an in-
flection point there, i.e., F'(1)=0 and (a) F"(1)>0 or (b)
F"(1)=0. From (3.24), setting F'(1)=0 gives a+|E|=2,
for which (|E|/8)F"(1)=1—a. Thus there is a local mini-
mum for @«<<1 and an inflection point when a= 1. [The third
choice, a>1, for which F has a local maximum at £=1, can
be shown to be a particular case of class (iv), described be-
low.] Assume, then, that a<1. If >0 then G(0)<0 and
G(7) has no zeros in (0,1), as sketched in Fig. 10(ia). If
a<0 then G(0)>0 so that G(n) has a zero
m=~—a/|E| in (0,1). Thus G<O in (7;,1), as shown in
Fig. 10(ib). Hence the two subclasses are (ia) 0<a<1:
single orbit along [ —1,1], and (ib) «<<0: two orbits along
[ % 7, % 1]. The boundary for transitions between these two
subclasses is the point @ =0. Geometrically, F'(1)=Q—2
and G'(1)=2Q/|E|.

(ii) Planetary orbits. This class is sandwiched between
two ellipses: £= ¢, &,, which implies that F (&) (and there-
fore F ) possesses two zeros > 1, as depicted in Fig. 10(ii).
This is true iff A,B>1 and A(F)=A2—4C>0, which is
equivalent to @+ |E|>2, @|E|<1, and a > 1. Geometrically,
these conditions ensure that F(0)=G(0)<O0, F'(1)>0, and
G'(1)>0. Figure 11 depicts the region in the a-|E| plane
corresponding to planetary orbits. Note that the functional
constraints on G are automatic; an orbit confined to the an-
nular region &, <¢<§, must necessarily explore the entire
range of 7.

(iii) Satellite orbits. These orbits occupy two disconnected
regions between the ellipse £=¢, and the two branches of
the hyperbola = * 7, which implies that F(£) possesses a
single zero >1, as shown in Fig. 10(iii). This holds iff
0<Q<?2 and @<0, as indicated in Fig. 11.

(iv) Lemniscate orbits. These orbits encircle both masses,
filling the entire region within an ellipse £=§,, as shown in
Fig. 10(iv). As in case (iii) F(£) must have a single zero
>1, again implying 0<{)<<2. Now, however, @ must be
positive in order that e[ — 1,1]. The corresponding region
in the a-|E| plane is indicated in Fig. 11. The boundary

(3.26)
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between lemniscates and satellite orbits is the vertical line
segment, =0, |E|<2, and the boundary between lemnis-
cates and planetary orbits is the segment O =0, 1 <a<2.

Three-dimensional orbits

When ©>0 there are only two topologically distinct
classes of orbits to consider, owing to the fact that the cen-

J. E. HOWARD AND T. D. WILKERSON
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trifugal barrier excludes the possibility that & =1 or

. m,=1. Figure 12 depicts these classes, along with the corre-

sponding plots of F(&) and G(#%). The first type forms a
single well, with &, <£<§, and |#|<#,. The second type
forms a double well, with ;<7< 7,. How is the transition
between these types related to the pitchfork bifurcation of
Sec. III A? In order to answer this question, let us derive
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FIG. 10. The four classes of trapped meriodional orbits (x=0) for the symmetric two-center problem, along with the trapping polyno-
mials F(&) and G(#) for each class: (i) Pendular orbits, confined to the z axis with (a), >0; and (b) @<<0. (ii) Planetary orbits, sandwiched
between ellipses é=¢; and §,. (iii) Satellite orbits, confined by the ellipse £=¢, and one of the two branches of the hyperbola
7= * 7. (iv) Lemniscates, which encircle both masses, filling the entire region within the ellipse €= &, . The satellite and lemniscate orbits
are taken from Figs. 8 and 9 in Strand and Reinhardt [14], used by permission.
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FIG. 10 (Continued).

conditions on the coefficients A, B, and C for each class.
Our task is complicated by the fact that F and G no longer
factor when x>0, necessitating the calculation of the

discriminant A of the quartic F(£). In all cases
F(0)=G(0)=—(V|E|)(a—u/2) and F(x1)=G(*1)
=u/2|E|>0. Also, F'(x1)==(/EDQF2) and

G'(£1)==x2Q/|E|.
(i) Single well. From Fig. 12 we see that the distinguish-
ing feature is the sign of F(0)=G(0), which in this case

4 oy T T T T T
35 F -
3t .
£ "
25 . .
"
%
2K Satellite h .o% . 4
N g
15 F §
1+
0.5 |
O 1
-2 -1 0

FIG. 11. Trapping region in the a-|E| plane for meridional or-
bits in the symmetric two-center problem.

must be negative, so that a>u/2. Since G(0)<0 and
G(1)>0, a zero 7, between O and 1 is guaranteed. Simi-
larly, F(&) always has a zero in (—1,0). It follows that 3
real zeros &;, &>1 iff A(F)>0.

(ii) Double well. Here we need F(0)=G(0)>0, which
implies that a<<u/2. As a glance at Fig. 12 will show, G
does not necessarily possess real zeros 7, 7, €(0,1). This
is the case iff A(G)>0 and 0<B<2, which implies
O2>2ulE| and —|E|<a<|E|. The last condition is
equivalent to >0, so that G’(1) is positive. The con-
straints on F(£) are rather subtle. As a glance at Fig. 12(a)
will show, trapping is lost when the positive zeros (§,&,)
merge and become complex, which means A(F)=0. How-
ever, since F(0) and F(— 1) are both positive, it is conceiv-
able that F(&) have a negative double zero. Hence,
A(F)=0 does not necessarily imply loss of trapping. Fur-
thermore, for a general quartic A(F) can vanish when two
complex zeros merge. The extraneous configurations may be
eliminated by Sturm’s theorem [29], which yields necessary
and sufficient conditions that a polynomial have N zeros in a
specified interval (a,b). Fortunately, owing to the interde-
pendence of the coefficients of F and G, the trapping bound-
aries can be determined semianalytically, as follows.

The discriminant of F is given by [29]

27A(F)=4[3A%+B?*—12C]?—[9C(3A%+8B)

+94%(B—3)+2B3%]% 3.27)
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FIG. 12. The two classes of trapped three-dimensional orbits (x>0) for the symmetric two-center problem, along with the correspond-
ing trapping polynomials F and G for E=—1, ©=0.6, and (a) single well (¢=0.35) and (b) double well (a=0.25).
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FIG. 13. Trapping regions in the |E|-a plane for two centers,
with £ =0.5. The discriminant A(F) vanishes along the curves la-
beled Eip, i=1, 2, and 3, while A(G)=0 on 33 . The single-well
region (7C1) is bounded by 211,; , the line = /2, and the positive
@ axis. The double-well region (TC2) is bounded by 3} and
3.4, and the lines @= /2 and |E|=0; the small region above the
origin is eliminated by the condition a<|E|. The trapping region
for the finite dipole (FD) is bounded by 3%, 3., and the negative
@ axis.

First note that in order to satisfy A(F)=0 the first expres-
sion on the right-hand side must be positive. A little numeri-
cal exploration reveals that this condition is always satisfied
for parameters of interest. The conditions A(F)=0,
A(G)=0 define surfaces X 5,3 ; which partition the space
|E|,a,u into regions of positive and negative A(F) and
A(G). This partition also holds for the finite dipole, to be
discussed in Sec. IV. Figure 13 depicts level sets of 3 and
3. in the |E|-a plane for u=0.5. The surface 3 is easily
seen to be the parabola

a=—|E|*V2ulE],

which tends to the line o= —|E| as u—0. It is convenient to
label the upper and lower halves Eé , respectively. We leave
it to the reader to verify the following.

Lemma. The plane a= w/2 is tangent to the surface 2
along the line a=|E|= u/2.

Since A(G)<0 inside 3, the trapping region must lie
outside this region. The surface 3 has three sheets, labeled
31> . For the two-center problem, the condition a<|E| re-
stricts attention to EIF, where £, =§&,. The other two sheets
correspond to negative double zeros. The sheets 3 1. and 3%
intersect at a point where F(§) has two double zeros. The
trapping region is thus the wedge-shaped region bounded by
Eg and 2}; and the positive a axis. Thus trapped orbits exist
for arbitrarily large o and E>E,;,, where 3.} and 3./, inter-

(3.28)

FIG. 14. Trapping regions in the |E|-a plane for two centers,
with = u. . In this transition case the curves (actually surfaces) all
intersect at the point @=|E|= 1. Thus the double-well region 7C2
shrinks to the point @=|E|=1, with TC1 bounded as shown. Since
E% passes through the origin, the finite dipole region is also cut off.

FIG. 15. Trapping region in the |E|-a plane for two centers,
with £=2.0. Since u> u, there are no double-well orbits. Single-
well orbits, on the other hand, exist for arbitrarily large o and u.
Since E% crosses the a axis at a positive value of a, there are no
trapped finite-dipole orbits (see Fig. 21).
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FIG. 16. Level sets of potential energy V(p,z) for the finite
dipole.

sect. A single well exists in the region labeled TC1, where
a>u/2; a double well exists in the region TC2, where
@< /2. The small area between 3 and the « axis is elimi-
nated by the condition a<|E|.

What happens when u= w«.? Figure 14 provides the an-
swer. In this special case the surfaces S} and 3¢, and the
plane a= u/2 all meet at the single point P. Hence the re-
gion TC2 shrinks to zero and only a single well is possible.
Finally, Fig. 15 illustrates the situation for w>u.. Since
3} now crosses 35 to the left of a=|E|, only single-well
confinement is possible for w> .. Arbitrarily large « is
again permitted, with E;, given by the intersection of 3}
and o= u/2. This yields a quartic for E;,. In summary, we
conclude that the trapping region is simply connected, un-
bounded in o and bounded in E. Just as in the closely related
Stark problem [24], the existence of a third invariant cannot
confine orbits not already energy confined, in the absence of
a saddle point.

IV. FINITE DIPOLE

The finite dipole has no astronomical analog, and an ac-
cordingly briefer history. It was first treated tangentially by
Fermi and Teller [32], and later in detail by Turner and Fox
[15—17], where the motivation was to estimate the minimum
dipole strength required to bind an electron. Figure 16 de-
picts level sets for the potential energy V= 1/r,— 1/r;.

A. Effective potential

From (2.5), the effective potential is, with o= —1,

1 1

)72
=t — :
U(p,z) 2p2 s r

4.1)
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FIG. 17. Level sets of effective potential U(p,z) for the finite
dipole for (a) #=1.0 and (b) x=2.0. The potential well exists for
all u<up,.=1.539. The separatrix (U=0) is indicated by the
dashed curve in (a).

Figure 17 shows level sets of U for «=1.0 and 2.0. In the
first case there is a single potential well, not unlike a jelly
bean, which has evidently disappeared at the larger value of
wm. The critical points are given by

)72 1 1
= — —+ —_——— =
UP p3 P r? rg} 0,
4.2)
U_z—l z+1
ST
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25
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FIG. 18. Normal-mode frequencies for the finite dipole.

Equatorial equilibria are clearly impossible. As in the case of
the two-center problem the second of these equations is solv-
able for p((zg). However, care must be taken to restrict
|z|>1 in order to exclude extraneous solutions. The resulting
locus of circular orbits is shown as the upper curve in Fig. 4,
along with the corresponding locus for two centers. The first
equation then gives the corresponding value of w. What hap-
pens for large ©? Equation (3.10) allows equilibria for arbi-
trarily large p and z. However, using the asymptotic expres-
sion py=~ \/Ezo in (4.2) shows that

limu=33=yu,. (4.3)

77—

That is, there is no potential well for u>u.. This unex-
pected and important result, which accounts for the disap-
pearance of the jelly bean in Fig. 17, has apparently gone
unnoticed until now. As in the case of the two center prob-
lem, the fixed point py, zo is born out of the source point
(0,1), near which py~u and zo~1+ %,uﬁ. Numerical evalu-
ation of the Hessian determinant confirms the stability of the
critical point for all u<<pg, .

Physically, condition (4.3) implies that a classical electron
of arbitrary angular momentum p, can be trapped by a di-
pole of strength

2
3\/§P¢

dme

p> , “4.4)

in agreement with Fox’s result for the point dipole [16]. That
is, classical bound states exist for an arbitrarily small dipole
moment. Our quantitative result (4.4) sharpens the qualita-
tive result of Turner and Fox [15]. In contrast, quantum-
mechanical calculations show that a minimum dipole mo-
ment is required to bind an electron.

3.5 -

25 b ; g

05 4

35 | .

05 B

FIG. 19. Particle orbits in the finite dipole for ©=1 and (a)
E=—0.0251 (trapped) and (b) E=0.01 (untrapped), all in scaled
atomic units.

Normal modes

The normal-mode analysis closely parallels that for the
problem of two centers. The results are summarized in Fig.
18, which shows the libration frequencies ). as a function
of u. Both are seen to decrease monotonically with increas-
ing w, vanishing at u= u., where the critical point runs off
to infinity. As for the problem of two centers, the two modes
are nondegenerate, but in this case are too close to distin-
guish as fast and slow modes.

B. Particle trapping

Figure 19 shows trapped and untrapped orbits in the finite
dipole for w=1. In the first case (E= —0.0251) the orbit is
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confined by energy conservation. The second plot illustrates
a typical untrapped positive energy orbit (E=0.01). In this
field, all positive energies are untrapped, while negative-
energy orbits can be trapped in a potential well by energy
conservation. The existence of the third invariant does not
confine any particles not already trapped by energy conser-
vation. Its sole effect would seem to be to limit the volume
available to an orbit trapped in a potential well, as can be
seen in Fig. 19(a). The underlying reason for the impotence
of the third invariant in this case seems to be the lack of a
hyperbolic critical point of U, in contrast to the Stark and
two-center problems. Nevertheless, it is of interest to dis-
cover the values of all three invariants corresponding to
trapped orbits. This not only furnishes independent proof of
particle trapping, but, more importantly, establishes neces-
sary information for semiclassical quantization.

As noted in Sec. II, the separated Hamiltonians for
o==*1 map into one another upon interchange of ¢ and
7. Thus

1 M
(= Dpit gpy ~EE=a,

(4.5)

| 2.2 ~ 2
11— +————+Ep*+2y=+a.
z(1=7%)p5 (1= 77 Ep+2n=+a

Just as in the problem of two centers, the third invariant has
a geometric interpretation, given implicitly by Coulson and
Joseph [31]:

Q=L -L,+2(cosf; +cosb,), (4.6)

where again L; and L, are the angular momenta of the test
particle with respect to the two source masses, and #; and
6, are the respective central polar angles. It is not difficult to
show that the relation {) = a+|E| also holds for trapped or-
bits in the finite dipole. The trapping polynomials are

F(n)=n*—An’-Bn*+An—C=<0,
4.7)
G(§)=¢'~BE-C=0,

where A, B, and C are given by (3.25). However, since &
and # are defined on different domains, the trapping condi-
tions are somewhat different.

Proposition II. An orbit with parameters (E,u,a) is
trapped iff both (i) F(7n) is negative between two positive
zeros (7;,1,) with ;e[ —1,1], and %,=0; and (ii)) G(§)
is negative between two zeros (&;,&,) with &£,=0 and
&H=1.

In contrast to the two-center problem, particle trapping in
the finite dipole has not been extensively studied. While Fox
[16] has proven the important fact that trapped orbits exist in
the finite dipole, he did not classify orbits nor derive condi-
tions for their existence. Nor did he mention the flight of the
potential well as u— u,.. We now carry out this analysis,
emphasizing the three-dimensional case and only briefly
treating the nonphysical meridional classes.

M / ;

"':\ &

G(&)

FIG. 20. Three-dimensional trapped orbit and corresponding

trapping polynomials for the finite dipole.
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Meridional orbits

When ©=0 there are only two classes of trapped meridi-
onal orbits: pendular orbits confined to the z axis
(2=0,2), and a class of satellite electron orbits localized
about the positive charge for —2 <) <0, a<<0. There are no
counterparts to the planetary and lemniscate orbits encoun-
tered in the two-center problem. Of course, the region be-
tween the two source charges does not exist in real atoms
and molecules, where the dipole term in V is only the first
term in a multipole expansion. Only a class of pendular or-
bits confined to the portion of the z axis above the positive
charge can be physically realized. Nevertheless, these fami-
lies of orbits are important in understanding the three-
dimensional orbits which unfold from them for x>0.

Three-dimensional orbits

When ©>0 there is only one class of trapped orbits, oc-
cupying a singly connected toroidal region around the posi-
tive charge, as already seen in Fig. 19. Even though £ and
n are reversed, the basic conditions on F and G are identical
to those for two centers, namely
F(0)=G(0)=(u—2a)|E|, F(x1)=G(x1)=ul2|E|>
0, F'(x1)==2/E|(QF2), and G'(x1)==2Q/|E|.
First consider the form of G(£). In order to have G(£)<0
between £&;,&,>1, G'(1) must be negative and G(0) posi-
tive, as depicted in Fig. 20. This requires that )<<0 and
therefore @<<—|E|. Further, A(G) must be positive, which
implies Q2>2u|E|. Now consider the form of F(7). We
know that F(0)>0 and F(* 1)>0, with F' <0. This means
that F(#) must have a minimum greater than 1 and a mini-
mum and maximum in (—1,1), as depicted in Fig. 20(c).
The trapping region in the space of the three invariants
|E|, a, and u is defined by the same surfaces 2, and 3 as
in the case of two centers, defined by the vanishing of the
respective discriminants. However, for the finite dipole the
constraint @< — |E| eliminates the upper branch 3}.. The
resulting trapping region is bounded by 3%, 3. and the
negative a axis. For u=pu,, 212..- passes through the origin
(Fig. 14) and the trapping region vanishes.! For u>pu,,
212; intersects the positive a axis and there are no trapped
orbits. Figure 21 presents a perspective view of the simply
connected three-dimensional trapping volume, bounded by
the surfaces 3% and 3 , the a-u plane, and the a-|E| plane.
It is seen to resemble a triangular pyramid, terminating at the
point (0,0,u.), where the three surfaces intersect. When
u—0, 3= becomes the line @=—|E|, the two sheets 37
and 33 merging into the line a=—2—|E|(Q=—2), as de-
picted in Fig. 21. In this limit the edge formed by the trans-
verse intersection of 2% and 2, is gradually washed out as
both sheets spread out and become tangent to the a-|E|
plane. The trapping region is quite similar to that for the
Stark problem [33].

V. POINT DIPOLE

The ideal electric dipole is an important example of an
elementary integrable system and is discussed in many text-

'This limit is singular. More

lima‘|E|q0|E|6A(F)=0.

precisely, when u=gu,,
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books on mechanics [19] and electromagnetism [18]. As a
limiting case of the finite dipole, it is, by virtue of its sim-
plicity, often used as a model for both classical and quantal
descriptions of experimental phenomena. Fox [16] classified
the possible motions and proved the existence of (circular)
bound states, but did not consider their stability. Chan-
drasekaran and Wilkerson [34] analyzed the meriodional and
three-dimensional motion in detail, expressing the orbit in
terms of elliptic functions. Several studies have addressed
the important problem of determining the minimum dipole
moment required to bind an electron. The results show that
whereas H,O will trap an electron H,S cannot. As in the case
of the finite dipole our primary aim is to derive explicit con-
ditions for particle trapping, using both the effective poten-
tial and the three invariants.

Consider an electric dipole located at the origin and ori-
ented along the z axis, i.e., p=pZz. The Hamiltonian for a
positive test charge moving in this field is, in atomic units
and spherical polar coordinates,

p cosf
e

1 p% p2
2 ¢
H= + =+ ==
2\Pr T 2T Y inZe

(5.1)

where p,=F, po=r20, and p ,=r’sin’*0¢. Since ¢ is cyclic,
P4 is conserved and we may again define an effective poten-
tial

pfﬁ p cosf
2r%sin’ 6 r?

U(r,0)= (5.2)

Figure 22 depicts level sets of the dipole potential
V=p cos@/r*. As in the case of the finite dipole, it is conve-
nient (and desirable) to scale such that U depends on a single
parameter, here =2 pfb/ p:

M 2 cosf
r2sin® 6 r?

U(r,0)= 3 (5.3)

This scaling is chosen to be consistent with that for the finite
dipole. Figure 23 shows level sets of U for u=1.0, 1.5396,
and 2.0. Note the absence of isolated critical points and the
intriguing cleft for u=1.5396, about which we shall have
more to say presently. Clearly, trapped orbits must have
negative total energy E and scattering orbits positive E. The
separatrices are given by setting U=E=0, which implies
that the angular function

M
= —— 4 = R
g(0) > 5inZo 2 cosf=0, (5.4)
which is equivalent to a cubic in x =cosé:
Po(x)=x3—x— E_o. (5.5)

4

As Fox has shown [16], this equation has two negative zeros
x(u) in the range —1<x<<0 for all ,u,<,uc=8\/§/9. The
dependence of the corresponding angular bounds 6, , on w
is depicted in Fig. 24. For u<<1 the potential well occupies
most of the lower quadrant. As u— ., 6, and 6, merge and
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FIG. 21. Perspective view of trapping region in the space of
invariants (|E|,a, u) for the finite dipole. This region is bounded by
the surfaces 35, 3%, the @-u plane and the a-|E| plane. As
u—0 the surface is asymptotic to the @-|E| plane within the diag-
onal region bounded by the lines &= —|E| and @= —2—|E|. Here
this portion of the figure has been truncated at |E|=4.5.

the well disappears. Just as in the case of the finite dipole
there is no potential well and therefore no trapped orbits for
=g s

It is easily shown that U is a Stackel potential [19], so that
the motion is completely integrable. Thus

1 M
1.2 2
=L1p2y I p24 O = .
H=3p,+ 52\ Pet gug T4cosl|=E  (5.6)
or
, @
where
5 M 2
a=py+ ———-+4cosf=L>+4 cosf (5-8)

sin%6

is the third invariant, which tends smoothly to Q [Eq. (4.5)]
for the finite dipole as a—0. From (5.7) it follows that

r(t)=\2E+2roiot+ 12, (5.9)
where r and 7 are the initial radius and radial velocity. The
6 motion follows straightforwardly from (5.8), and is re-
ported in detail in Chandrasekaran and Wilkerson [32].

For positive E, r increases without bound, while for nega-
tive E the particle invariably plunges to the origin in a finite
time 7=—rgro/E. For E=0 and 7,=0, r=r,, i.e., the mo-
tion is confined to the surface of a sphere, which leads to the
bound state discussed by Fox. Figure 25 shows typical bound
and scattering orbits, along with the corresponding invariant
curves.

FIG. 22. Level sets of the potential energy for the point dipole.
A. Critical-point analysis
Writing

1
U(r,())=r—2g(0), (5.10)

with g(#) given by (5.4), we seek relative equilibria
(ro,6p) via

2
Ur=_r_3g(6)=0a

1
U9=;7g’(0)=0. (5.11)
That is, rq is arbitrary and 6, is a double zero of g(8). (We
leave it as an exercise for the reader to show that the Hessian
determinant vanishes identically and therefore that the type
of critical point is undetermined.) The value of @ is thus
given by the simultaneous equations

u+4sin?6 cos#=0,

u cos@+2 sin*6=0. (5.12)
Eliminating u yields
sin*f(3cos’6—1)=0 (5.13)
or
cosfy=—/3/3. (5.14)
Substituting this value in (5.12) then gives
8
ﬂczaﬁ , (5.15)
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FIG. 23. Level sets of the effective potential for the point dipole
with #=1.0, 1.5396, and 2.0. For = u, a line of unstable circular
orbits exists along the cleft at 6,=125.26°.
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FIG. 24. Angular bounds 6, , for the potential well for the point
dipole, as a function of u. For <1 the well occupies most of the
lower quadrant 7/2<6<7. When u— u. the two rays merge and
the well is closed off.

at which point the two bounding rays 6, , merge, as in Fig.
24. Since p,=p =0, it follows that E=0. Thus, for the par-
ticular energy E=0 and scaled angular momentum u= .,
there is a line of circular orbits at an angle of —35.26° with
the x axis. This line is precisely the curious cleft encountered
in Fig. 23(b).

B. Classification of orbits

From (5.7) and (5.8) we see that an orbit with energy E,
scaled angular momentum g, and third invariant a is con-
strained to move in the wedge

ﬁ—a+4 cosf<a, (5.16)
2>i 5.17
ri=or. (5.17)

Fox [16] classifies orbits in terms of the initial radial velocity
Fo and position ry. Here we adopt a Hamiltonian viewpoint
and focus on the three invariants, which control the form of
the effective potential U. In shifting the point of view from
initial conditions to invariants, we also change the nature of
the question to be answered, namely, what values of u and
« yield possible physical motions?

Radial motion

Case 1: >0 (potential barrier). E must be positive (scat-
tering orbits) with » bounded from below by

a 12
Fmin— ﬁ . (5183)
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(a)

FIG. 25. Invariant curves and associated orbits for the point
dipole, for (a) a trapped orbit with £=0.5 and a=E=-1, and (b) a
scattering orbit with ©=2 and a=E=1. In each case the radial and
angular bounds intersect at points lying on the corresponding equi-
potential.

Case 2: a<0 (potential well). If E>0, then p, can never
vanish; all orbits are unbounded. If E<<O0, then r is bounded
from above by

o 172
rmaxz(ﬁ) . (518b)

Case 3: a=0 (no well). All orbits have positive energy and
move with constant radial velocity outward to infinity or
inward to the origin, depending on the direction of the initial
velocity.
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Radial bounds calculated from Egs. (5.18) are shown for
typical trapped and scattering orbits in Fig. 25.

Angular motion

Inequality (5.16) limits the angular motion and is conve-
niently written

P(x)=4x*—ax’>—4x+a—u=0 (5.19)
with x = cosf. We seek conditions on « and u such that P(x)
is positive in some interval (x;,x,) e[ —1,1]. Since P(x) is
cubic, complex zeros are thereby excluded, requiring that the
discriminant A(P)=0.

By definition,

AP) =TI (x;—x)2 (5.20)
i<j

It is a straightforward exercise in the classical theory of

equations to show that [28]

27 648A(P)=(a?+48)>— (a®— 144a+216u)>. (5.21)

Thus, for chosen «a, setting A=0 gives the critical value of
u:

L l4da—a’+(a?+48)"

M 216 (5.22)
The corresponding double zero of P(x) is then
a—+Ja?+48
x¥m—— (5.23)

12

When u>pu*, A is negative, and there are no zeros in
[—1,1] and therefore no physical solution. When a=0,
P(x) reduces to Py(x), which defines the separatrix rays.
The angular bounds 6, ; calculated from P(x) are shown for
a typical trapped and a scattering orbit in Fig. 25. Note that
the radial and angular bounds intersect at points lying on the
corresponding equipotential. These invariant curves corre-
spond to the curves of constant £ and # for the finite dipole,
as plotted in Fig. 20.

Case 1: a>0: P'(+1)=2(4—a)>0 for <4 and
P'(—1)=2(4+a)>0 for all >0. Figure 26 shows P(x)
for a=1 and w=0.5. Since it is always the case that
P(1)=P(—1)=— pu, the positivity of A guarantees two real
roots in [ — 1,1], even for @ >4.

Case 2: a<0: P'(+1)>0 for all a<0 while
P'(—1)>0 for all @ >—4. Thus, provided that A>0, we
conclude that 3(x;,x,)e[—1,1] for all &> —4. Further-
more, since P’'(0)=—4, x; cannot be positive. Since
P(0)=a— u, it follows that x,>0 if &> u, while if <0
both x; and x, are negative. Since P'(—1)<0 for a<—4
there are no zeros of P(x) in [—1,1] in this case. For ex-
ample, for a=1, w*=225 and x*=0.5; for a=—1,
u*=0.92593 and x*=—0.666 67.

Case  3: a=0: Here
Po(x)=4x3>—4x—u, which has
x*=—1/3/3 when u*=pu.=83/9.

(5.19)  reduces to
a double zero at
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FIG. 26. Trapping polynomial P(x) for the point dipole for
a=1 and ©=0.5. Since P(x) is positive between x; = —0.301 and
x,=—0.682, all orbits with this a and u are bounded by the rays
6,=107.5° and 6,=133°.

Remark: It is not always necessary to solve (5.22) for
u*. Since P(0)=a—pu, it is sufficient that a>u. If
a<u, then w* must be evaluated.

VI. DISCUSSION

We have studied in some detail three closely related inte-
grable systems: the problem of two centers, the finite dipole,
and the point dipole. Each is of considerable interest in itself,
both because of its myriad physical applications, but also by
virtue of the unusual mathematical property of complete in-
tegrability. In each case we have emphasized the qualitative
features of the effective potential, long overlooked in favor
of the separated equations [in elliptic coordinates for the
cases of two centers and the finite dipole (TC-FD)]. Thus a
critical point analysis of U reveals interesting bifurcations in
the TC problem, with important differences between the
symmetric and asymmetric varieties. The surprising disap-
pearance of the potential well at a critical value of u in the
finite dipole is apparently completely new. Neither transition
is obvious in the separated equations. These methods are
especially important in analyzing nonintegrable perturbations
of the TC-FD problems, such as the magnetic TC problem,
which is axisymmetric and therefore possesses an effective
potential. As in the chaotic Stark-Zeeman system, the unper-
turbed integrable system provides a springboard for analyz-
ing the complete perturbed problem.

We have also carried out a complete algebraic solution of
the problem of characterizing three-dimensional trapped or-
bits in the symmetric TC and FD problems. These results
directly impact the semiclassical quantization of the corre-
sponding atomic systems such as H;’ and HeH?*, and dipo-
lar molecules such as H,O and H,S. The corresponding so-
lution for unequal masses introduces a fourth independent

parameter, and requires use of Sturm’s theorem to derive a
complete set of trapping conditions. This calculation will be
reported elsewhere [25].

It is interesting and instructive to examine the several
connections between these physically different but math-
ematically very similar systems. Thus the potential wells in
TC and FD both undergo dramatic metamorphoses when a
control parameter crosses the same critical value. Owing to a
previously unrecognized symmetry in the separated Hamil-
tonians, the trapping polynomials F and G are identical in
the two systems, albeit defined on different domains. The
geometric form of the third invariant is very similar for the
two-center problem and the finite dipole, the latter tending
smoothly to the familiar invariant for the point dipole as the
charge separation goes to zero.

This paper is one in a series devoted to integrable systems
in atomic physics. Previous articles dealt with integrable
cases of two-ioh motion in a Paul trap [26,27]. This system
undergoes a pitchfork bifurcation, forming a double well
strikingly similar to that seen in the symmetric two-center
problem. More recently we examined the interesting connec-
tions between saddle-point ionization and the third invariant
for the Stark problem [24]. Here the third invariant can con-
fine particles untrapped by energy conservation, but only in
the presence of a hyperbolic fixed point of the effective po-
tential. An analogous result holds in the two-center problem,
where the third invariant can trap particles locally in one half
of the double well. In contrast, the finite dipole does not
possess a saddle point for any choice of parameters. Hence,
the third invariant cannot trap any orbits not already confined
by energy conservation.
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APPENDIX: LEMMA ON BIFURCATIONS OF
AXISYMMETRIC EQUILIBRIA

Consider a general two-dimensional effective potential

U(p,z)z‘z%7+V(P,z), (A1)

where V(p,z) is an arbitrary smooth axisymmetric potential,
which may or may not be harmonic. In addition to the two-
center problem and the finite dipole, this includes the Stark
problem [24], the magnetic two-center problem [22], with
B=B1, the E||B problem [24], and two-ion motion in the
Paul trap and Penning trap [26,27].

The equilibria are given by
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U,=-5+v =0, (A2)

U,=V,=0. (A3)

Let I' be the locus of equilibria defined by (A3). Then we
have the following lemma.

Lemma. The function ,u(p,z)=p3Vp reaches an extre-
mum at a bifurcation point in proceeding along I'.

Proof. From (A3), dp/dz=—U_/U,, on T'. Hence, ex-
plicitly,

1 (du 3V,\dp
F(a‘;)fvm*(w 7

p | dz

=0. (A4)

—U, _ U?rz_ UppUzz
U U

Pz pz

Conversely, if p#0, du/dz=0=det D>U=0.

Remark. The nature of the extremum in general depends
on the detailed structure of V(p,z). There could, for ex-
ample, be more than one extremum. In the case of the prob-
lem of two centers it is easily seen that w=0 at both end-
points of T'*. Since u=0 it follows that du/dz attains a
local maximum at z,. .
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FIG. 21. Perspective view of trapping region in the space of
invariants (|E|,e, ) for the finite dipole. This region is bounded by
the surfaces %, 27, the a-u plane and the a-|E| plane. As
u—0 the surface is asymptotic to the a-|E| plane within the diag-
onal region bounded by the lines a= —|E| and a= —2~|E|. Here
this portion of the figure has been truncated at |E|=4.5.



