Fractions

September 5, 2009

Abstract

This handout presents a method to add any fraction along with an explanation of the basic properties of addition and multiplication that make this work.

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

1. Identify a, b, c and d.
2. Plug in a, b, c and d into the second expression.
3. Simplify the second expression.

Example 1

$$
\frac{3}{5}+\frac{7}{6}=?
$$

1. Identify $a=3, b=5, c=7$ and $d=6$.
2. Plug in a, b, c and d into the second expression.

$$
\frac{3}{5}+\frac{7}{6}=\frac{a d+b c}{b d}=\frac{(3)(6)+(5)(7)}{(5)(6)}
$$

3. Simplify the second expression.

$$
\frac{3}{5}+\frac{7}{6}=\frac{(3)(6)+(5)(7)}{(5)(6)}=\frac{18+35}{30}=\frac{53}{30}=1 \frac{13}{30}
$$

Example 2

$$
\frac{2}{3}+\frac{2 A}{9}=?
$$

1. Identify $a=2, b=3, c=2 A$ and $d=9$.
2. Plug in a, b, c and d into the second expression.

$$
\frac{2}{3}+\frac{2 A}{9}=\frac{a d+b c}{b d}=\frac{(2)(9)+(3)(2 A)}{(3)(9)}
$$

3. Simplify the second expression.

$$
\frac{2}{3}+\frac{2 A}{9}=\frac{(18)+(6 A)}{(27)}=\frac{(3)(2 A+6)}{(3)(9)}=\frac{3}{3} \frac{2 A+6}{9}=\frac{2 A+6}{9} .
$$

Example 3

$$
\frac{6}{(i y)(i y-2)}+\frac{3}{i y}=?
$$

1. Identify $a=6, b=i y(i y-2), c=3$ and $d=i y$.
2. Plug in a, b, c and d into the second expression.

$$
\frac{6}{(i y)(i y-2)}+\frac{3}{i y}=\frac{a d+b c}{b d}=\frac{(6)(i y)+((i y)(i y-2))(3)}{((i y)(i y-2))(i y)} .
$$

3. Simplify the second expression.

$$
\begin{aligned}
\frac{6}{(i y)(i y-2)}+\frac{3}{i y} & =\frac{(6)(i y)+((i y)(i y-2))(3)}{((i y)(i y-2))(i y)} \\
& =\frac{((6)+3(i y-2))(i y)}{(i y)^{2}(i y-2)} \\
& =\frac{(6+3(i y)-6)(i y)}{(i y)^{2}(i y-2)} \\
& =\frac{3(i y)(i y)}{(i y)^{2}(i y-2)} \\
& =\frac{3(i y)^{2}}{(i y)^{2}(i y-2)} \\
& =\frac{3(i y)^{2}}{(i y-2)(i y)^{2}} \\
& =\frac{3}{(i y-2)} \frac{(i y)^{2}}{(i y)^{2}} \\
& =\frac{3}{(i y-2)}
\end{aligned}
$$

$$
\begin{align*}
& \frac{a}{b}+\frac{c}{d}=a \frac{1}{b}+c \frac{1}{d} \tag{1}\\
& =a \frac{d}{d} \frac{1}{b}+c \frac{1}{d} \tag{2}\\
& =a d \frac{1}{d} \frac{1}{b}+c \frac{1}{d} \tag{3}\\
& =a d \frac{1}{b} \frac{1}{d}+c \frac{1}{d} \tag{4}\\
& =\left(a d \frac{1}{b}+c\right) \frac{1}{d} \tag{5}\\
& =\left(a d \frac{1}{b}+\frac{b}{b} c\right) \frac{1}{d} \tag{6}\\
& =\left(a d \frac{1}{b}+b \frac{1}{b} c\right) \frac{1}{d} \tag{7}\\
& =\left(a d \frac{1}{b}+b c \frac{1}{b}\right) \frac{1}{d} \tag{8}\\
& =\left((a d+b c) \frac{1}{b}\right) \frac{1}{d} \tag{9}\\
& =\left(\frac{a d+b c}{b}\right) \frac{1}{d} \tag{10}\\
& \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} . \tag{11}
\end{align*}
$$

(1) Division is the same as multiplication by the reciprocal, here we split

$$
\frac{a}{b} \quad \text { into } \quad a \frac{1}{b}
$$

(2) With any mathematical expression we can multiply by a clever form of 1, add a clever form of 0 or rewrite it in an equivalent way. Here we multiply by the clever form of one $\frac{c}{c}$.
(3) Division is the same as multiplication by the reciprocal, here we split

$$
\frac{d}{d} \quad \text { into } \quad d \frac{1}{d}
$$

(4) Multiplication is commutative, so we convert $\frac{1}{d} \frac{1}{b}$ into $\frac{1}{b} \frac{1}{d}$.
(5) In (4) we can see two like terms with $\frac{1}{d}$ in common, so we may collect them. This step is called factoring. The reverse operation is distribution.
(6) With any mathematical expression we can multiply by a clever form of 1 , add a clever form of 0 or rewrite it in an equivalent way. Here we multiply by the clever form of one $\frac{b}{b}$.
(7) Division is the same as multiplication by the reciprocal, here we split

$$
\frac{b}{b} \quad \text { into } \quad b \frac{1}{b}
$$

(8) Multiplication is commutative, so we convert

$$
\frac{1}{b} c \quad \text { into } \quad c \frac{1}{b} .
$$

(9) In (8) we can see two like terms with $\frac{1}{b}$ in common, so we may collect them. This step is called factoring. The reverse operation is distribution.
(10) Division is the same as multiplication by the reciprocal, here we perform the multiplaction to combine

$$
(a d+b c) \frac{1}{b} \quad \text { to form } \quad \frac{a d+b c}{b}
$$

(11) By multiplying fractions we obtain the final result.

