Logic Homework 1

D. DAKOTA BLAIR

September 3, 2009

Abstract

We present a proof of the unique readability of prepositional sentences that relies primarily on an induction argument on the length of such sentences.

Definition 1 (Words) Let $A = \{0, 1, \neg, \wedge\}$. Then A combined with concatenation form a monoid A^* . Let the empty word be ϵ . Let |a| denote the length of a word $a \in A^*$ with $|\epsilon| = 0$.

Definition 2 (Sentences) *Let*

$$Sent_0 = \{p_i | p_i \in \{0, 1\}, i \in \mathbb{N}\}\$$

be the set of atomic variables.

Now inductively define Sent_n as

$$Sent_{n+1} = \{ \neg \varphi | \varphi \in Sent_n \} \cup \{ \land \varphi \psi | \varphi, \psi \in Sent_n \}$$

and finally

Sent =
$$\bigcup_{n\in\mathbb{N}}$$
 Sent_n.

Note that $\forall \varphi \in \text{Sent}, \varphi \in A^*$.

Lemma 1 The smallest set S of expressions with

- 1. Sent₀ \subset *S*
- 2. If $\varphi \in S$ and $\psi \in S$, then $\neg \varphi \in S$, $\neg \psi \in S$ and $\land \varphi \psi \in S$.

is precisely the set Sent.

Lemma 2 If P is a set of sentences and

- 1. Sent₀ $\subset P$
- 2. P is closed under \neg and \land .

then Sent $\subset P$.

Lemma 3 Each sentence is in one of exactly these forms:

- 1. p_i where $p_i \in Sent_0$
- 2. $\neg \varphi$ where $\varphi \in Sent_0$
- 3. $\land \varphi \psi$ where $\varphi, \psi \in Sent_0$

Moreover, φ *and* ψ *are unique.*

Proof 1 First we approach the distinct forms of sentences in Sent. Notice that these cases are mutually exclusive, for as words in A^* their first character will differ. Now let P be the set of sentences such that one of these properties hold. Note that $\operatorname{Sent}_0 \in P$ by (1). Now let $\varphi \in P$. Then by (2) $\neg \varphi \in P$. Similarly for $\varphi, \psi \in P$ we have by (3) that $\land \varphi \psi \in P$. Therefore the conditions of Lemma 2 are satisfied implying that $\operatorname{Sent} \subset P$.

Claim 1 Let $\varphi_0, \varphi_1, \dots, \varphi_n$ and $\psi_0, \psi_1, \dots \psi_m$ be in Sent with each φ_i and $\psi \in$ Sent. If $\theta = \varphi_0 \varphi_i \cdots \varphi_n = \psi_0 \psi_1 \cdots \psi_m$ then n = m and $\varphi_i = \psi_i$.

The proof of the claim proceeds by induction on the length of θ . If θ is of length 1 then the result holds as this may only be an atom $p_i \in Sent_0$.

Now assume this property holds for all sentences of a given length l and let $|\theta| = l+1$. Note that both φ_0 and ψ_0 are in Sent and therefore from earlier we know it must be one of the forms listed above. Thus we may find words $u_a, u_b, v_a, v_b \in A^*$ such that $\varphi_0 = u_a u_b$ and $\psi_0 = v_a v_b$ with $|u_a| = |v_a| = 1$.

Therefore by cancellation $\varphi_b\varphi_1\cdots\varphi_n=\psi_b\psi_1\cdots,\psi_m$ is of length |l|. Further, since θ is in one of the forms above, $u_a=v_a$ also by cancellation and it must be either an atom, \wedge or \neg . The only way it may be an atom is if $|\theta|=1$ which is the base case.

In each other case we have that $u_b\varphi_1\cdots\varphi_n=v_b\phi_1\cdots\phi_n$ is a sentence, that is a member of Sent as above, of length |l|. Therefore the induction hypothesis applies and we must have n=m, $u_b=v_b$, $\varphi_i=\phi_i$ for $1\leq i\leq n$. This proves the claim and therefore the lemma. \bigcirc