Logic Homework 4

D. DAKOTA BLAIR

September 15, 2009

Abstract A presentation of solutions to the fourth homework.

Problem 4.1

Theorem (Compactness of Propositional Logic). A set of sentences has a model if and only if every finite subset has a model.

Corollary (Consequence is finitary). A statement that follows from a set of sentences in prepositional logic follows from a finite subset of them.

Corollary. The four-color problem is finitary. That is, only finite maps need be considered.

Proof. Note that a given (possibly infinite) colored map a may be checked for the four-color property by a (possibly infinite) set M_a of sentences. Define C, the set of colors used in a colored map a as

 $C = \{x | x \text{ is a color used in colored map } a\}.$

Then for a state $S_{\alpha} \in a$ define a map Color : $a \to C$ mapping the state S_{α} to its color in *a*. The sentence

 $\phi(S_{\alpha}, S_{\beta}) = (S_{\alpha} \neq S_{\beta}) \land \left(\operatorname{Color}(S_{\alpha}) \neq \operatorname{Color}(S_{\beta})\right) \land (|C| \leq 4)$

may be constructed for each pair of neighboring states $S_{\alpha}, S_{\beta} \in a$. Then

$$M_{a} = \bigcup_{\substack{S_{\alpha} \in a \\ S_{\beta} \in a \\ S_{\alpha} \text{ neighbors } S_{\beta}}} \phi(S_{\alpha}, S_{\beta})$$

is a set of sentences which must all be true if the four-color property holds for the map a. If any one is false, the property does not hold for that map. By the compactness theorem there exists a finite subset m_a of this set which sufficies to prove the theorem on this map. Let

$$M=\bigcup_a m_a.$$

This is a (possibly infinite) set of sentences. Therefore by the compactness theorem there exists a finite set M_0 that models ϕ .

Then the set M_0 corresponds to a finite portion of the map a. Since this portion is all that is needed to prove the four-color property of this map, it may be considered independently as a finite map. Because this can be done for any colored map, only finite maps need be considered for the four-color theorem.