MODEL THEORY II HOMEWORK 3

6 (Rothmaler 12.1.7). Suppose \mathcal{M} is κ -saturated, $A \subset M$ with $|A| < \kappa$ and n > 1 is a natural number. Prove that all n-types of \mathcal{M} over A are realized in \mathcal{M} .

Proof. Assume $|A| < \kappa$ and all (n-1)-types of \mathcal{M} over A are realized in \mathcal{M} . If $p \in S_n(A)$ then

$$p = \left\{ \varphi(\overline{v}) \middle| |\overline{v}| = n \text{ and } \mathcal{M} \models \varphi(\overline{v}) \right\}.$$

Let $\overline{v} = \{v_i\}_{i=1}^n$ and define

$$q = \left\{ \exists v_n \varphi(v_n) \middle| \varphi \in p \right\}.$$

Note that q is a consistent set of L_{n-1} formulas. If $\varphi \in L_{n-1}$, $\neg \varphi \notin q$ and $\varphi \notin q$ then neither $\exists v_n \varphi(v_n)$ nor $\exists v_n \neg \varphi(v_n)$ (which is logically equivalent to $\neg \exists v_n \varphi(v_n) \in q$) are in p. This contradicts the completeness of p. Therefore $q \in S_{n-1}(A)$ and is realized in \mathcal{M} by, say, $m_q \in M^{n-1}$ according to the induction hypothesis. If m_q realizes p then the proof is finished. If $m \in M^n$ is not a realization of p then there is a formula $\varphi(\overline{v}) \in p$ such that $\mathcal{M} \models \neg \varphi(m)$. Then define

$$p' = \left\{ \varphi(m, v) \in L_1 \middle| \varphi(\overline{v}) \in p \text{ and } |\overline{v}| = n \right\}.$$

If $\varphi \in L_1, \varphi(v_n) \notin p'$ and $\neg \varphi(v_n) \notin p'$ then $\varphi(m, v_n) \notin p$ and $\neg \varphi(m, v_n) \notin p$ which contradicts the completeness of p. Therefore p' is complete, hence $p' \in S_1(A)$ is realized by $m_{p'} \in \mathcal{M}$ by the saturation of \mathcal{M} . Thus $m = m_q \cup m_{p'}$ is a realization of p, and the result follows. \Box

7. If \mathcal{M} is a homogeneous structure then every partial elementary map $f : \mathcal{M} \to \mathcal{M}$ where $|\text{Dom}(f)| < |\mathcal{M}|$ can be extended to an $F \in \text{Aut}(\mathcal{M})$.

Proof. Let A = Dom(f) and $B = f[\mathcal{M}]$. Let $|A| = \kappa < |\mathcal{M}|$. Then well-order A and B as $A = \{a_i\}_{i < \kappa}$ and $B = \{b_i = f(a_i)\}_{i < \kappa}$, respectively. This gives rise to an elementary chain $\{\mathcal{M}_i\}_{i < \kappa}$ such that

$$\mathcal{M}(A) = \mathcal{M}_0 \prec \mathcal{M}_1 \prec \cdots \prec \mathcal{M}_i \prec \cdots$$

By homogeneity f can be extended by picking $a_{\kappa+1} \in M \setminus A$ and finding $b_{\kappa+1} \in M$ such that tp(a/A) = tp(b/B).

Therefore by the elementary chain lemma $\mathcal{M}_{\kappa^+} = \bigcup_{i < \kappa^+} \mathcal{M}_i \prec \mathcal{M}$. This argument works for every $\kappa < \mathcal{M}$, and therefore if κ is such that $\kappa^+ = |\mathcal{M}|$ we have that $\mathcal{M}_{\kappa^+} = \mathcal{M}$. Otherwise, one can form another elementary chain indexed by all $\kappa < \mathcal{M}$, and the union of these will be \mathcal{M} . Further, this model is defined as the image of F, the extension of f. Hence F is a (total) elementary map such that F(A) = f(A). Therefore $F \in \operatorname{Aut}(\mathcal{M})$ is an automorphism of \mathcal{M} extending f. \Box