MODEL THEORY II HOMEWORK 5

DAKOTA BLAIR

11. A countable theory T has a countable atomic model \mathcal{N} that is not minimal if and only if T has an atomic model \mathcal{M} of power \aleph_1 .

Proof. If \mathcal{N} is not minimal, then there is a structure \mathcal{M} such that $\mathcal{M} \simeq \mathcal{N}$ and $\mathcal{M} \prec \mathcal{N}$. Let f be an isomorphism from \mathcal{N} to \mathcal{M} . Therefore f is an elementary map, so by isomorphic correction we can find \mathcal{N}_1 such that $\mathcal{N} \prec \mathcal{N}_1$ by interpreting \mathcal{M} as a copy of $\mathcal{N} = \mathcal{N}_0$. Further since \mathcal{N}_0 is countable and atomic, it is homogeneous, therefore \mathcal{N}_1 is also atomic. This process forms a proper elementary chain

$$\mathcal{N}_0 \prec \mathcal{N}_1 \prec \cdots \prec \mathcal{N}_\alpha \prec \cdots$$

from which we can form

$$\mathcal{N}_{leph_1} = igcup_{lpha < leph_1} \mathcal{N}_{lpha}.$$

This is an \aleph_1 union of countable sets, hence $|\mathcal{M}_{\aleph_1}| = \aleph_1$. By homogeneity of \mathcal{N}_{α} for $\alpha < \aleph_1$, the model \mathcal{M}_{\aleph_1} is constructible and therefore atomic.

Conversely assume \mathcal{N} is atomic with $|\mathcal{N}| = \aleph_1$. Then by Ehrenfeucht's Omitting Types Theorem, there exists an \mathcal{M} which is countable and atomic. Therefore \mathcal{M} is prime, and hence elementarily embeddable in \mathcal{N} . Then $(\mathcal{N}, \mathcal{M})$ form an (\aleph_0, \aleph_1) elementary pair. By Löwenheim-Skolem and Ehrenfeucht's theorem there exists an elementary pair $(\mathcal{N}', \mathcal{M}') \equiv (\mathcal{N}', \mathcal{M}')$ which is countable and atomic. Then \mathcal{M}' and \mathcal{N}' are countable and elementarily equivalent, even to \mathcal{M} , consequently they are isomorphic. Thus \mathcal{N}' is a countable atomic model which is not minimal.

12. Prove $(\mathbb{Z}/4\mathbb{Z})^{\omega}$ is almost strongly minimal.

Proof. Identify the elements of $\mathbb{Z}/4\mathbb{Z}$ with the elements of 4. The formula φ that says $2x \neq 0$ is strongly minimial. It consists of elements which are sequences with finitely many 1s and 3s. The only complete types this model realizes are $x = 0, x \neq 0, 2x = 0, 2x \neq 0$ and 4x = 0. Thus φ cannot be split into an infinite coinfinite definable set. Further acl φ is everything, therefore the model is almost strongly minimal.