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DAKOTA BLAIR

Theorem (22). Let T be a countable Ny -categorical theory. If M < N then dim N =
dim M + dim(N/M).

Proof. Let M, be the prime model of T', ¢(x) € L(M,) a strongly minimal formula,
I a basis for p(M), J a maximally independent set in p(N) \ M.
... Then from Proposition 22 dim(N /M) = |J|. O

16. Justify Theorem 22 for |J| > N,.

Proof. O
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17. Calculate I(TI? Ry).

Proof that I(TIP, R;) = Ry. Any ®; model of TP must have at least one infinite con-
gruence class. Further any infinite congruence class must have cardinality either N,
or N;. If there are no congruence classes of size N; then there must be N; congru-
ence classes of cardinality Ny. This defines a single isomorphism class, say Ag, and is
characterized by having no N; congruence classses and N; many R, classes.

Let m = Xy or m € w+ 1 such that m > 0. Similarly let n = R, orn € w+1
such that n > 0. Note then there are Ry - Rg| = Ny choices for (m,n). There is
exactly one corresponding isomorphism class corresponding to a model with exactly
n distinct Ny classes and exactly m distinct N; classes. Assume two models M;
and My correspond to the same pair (m,n). Then any partial elementary map f
preserving the finite equivalence classes may be extended to an isomorphism. Let the
Ny and N; congruence classes of M be {a;}ic17, and {a;}ic1, respectively. Similarly
let the Ny and ®; congruence classes of My be {b;}ic2y, and {b;};c2;, respectively.
Define ' = 'Iy U 'I; and 21 = 21, U 2I;. Further define ¢g; : M; — I be the
function which gives the index in '/ of the congruence class of M; containing the
given element. Define g, : My — 21 similarly. Then F' : M; — M, will define an
isomorphism when the following condition is satisfied: if m € M, € {0,1} and
g1(m) € ', then F(m) = f(m) or g2(F(m)) = fa(g(m)).

Note that the isomorphism class of each such pair is distinct from Ay. Further
two models M; and M,y such that their corresponding pairs are distinct, that is
(my1,n1) # (Mg, ns), define two distinct isomorphism classes. This is because any
infinite congruence class must map to a class of the same cardinality. But if either
my # my or ny #5 then |'Io| # |?Iy| or |'I1| # |*I;| which prevents the construction
of an elementary bijection from M; to Mj. Then each pair (m,n) corresponds to a
unique isomorphism class, say A ).

Therefore Ay and A, ) define Ny distinct isomorphism classes. These classes
exhaust all }; models of T]f;p as any other models would have a different cardinality.
Hence T(TEP,R;) = Rg. O

18. Show that M as in Lemma 23 (1) is w-saturated if and only if dim p(M) is

infinite for some (all) strongly minimal ¢ over M.

19 (optional). Ezplore w-stable T where Lemma 23 holds
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Definition. 4 M model is w-homogeneous if for all @ =; b and ag there exists a

bo such that Gay =y bby.

Theorem (Baldwin-Lachlan). A countable theory T is k-categorical if and only if T

15 w-stable without Vaughtian Pairs.

20. FEvery model of a countable Vy-categorical theory is w-homogeneous.

Proof. By the Baldwin-Lachalan theorem T is w-stable. Let @, b, ay € M such that
@ =y b. If M is w-saturated then tp(ao/a) is realized in M by some element by. Thus
@ag = bby. If M is uncountable then it is w-saturated by categoricity. Therefore the

only case remaining is when M is countable and not w-saturated. In this case,
O
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21. Show there is a natural injection of M into S1(B) for M C B. Identify M with
its image and let M be its, topological, closure in Si(B). Show that q € Si(B) is in
M if and only if q is a coheir of q|r.

Proof. Let f: M — Si(B) be defined as f(m) = tp(m/B). Note that this map is well
defined as M C B C M. Note that if m;, my € M are distinct then ¢; = tp(m;/B) #
g2 = tp(my/B) since the formula x = m; is in ¢; but  # my is in ¢. Therefore f is
injective.

Let M = f(M) in Sy(B) and ¢ € M. To show that ¢ is a coheir of q|y; we need
to see that it is finitely realized in M, that is for each formula ¢(z,b) € ¢ there is
an m € M such that M = ¢(m,b). Since g is a complete type it is consistent and
therefore finitely consistent.

If ¢ is a coheir of g|y then for each ¢(z,b) € ¢ there is an m € M such that
M = o(m, b). O
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22. Prove that every ultrapower of a type p over M is an heir of p.

Proof. Let U be a nonprincipal ultrafilter on I and MY and pV be the ultrapowers of
M and p respectively.

(P)m = U<l @(T,7) € Lnym|Fa € A™ such that o(7,a) € p}

pY is an heir of p if (pY)r = (p)ur

(Pt = Upmew{©(Z,7) € Lpym|3a € A™ such that ¢(z,a) € p¥}

Let @ be some realization of p in N where M < N. then pV = tp((@’ /U)/MY)
M — MY aw—a?
U

23. Prove tp(a/Mb) is an heir of tp(@/M) if and only if tp(b/Ma) is an coheir of
tp(b/M)

24. Let TR be the theory of an equivalence relation with infinitely many infinite

congruence classes.

a) Analyze the complete types over A C M =Ty, especially A = M.

b) Analyze the definable complete types over A C M = Tg.

c) Let M < N andp € S(M),q € S(N),p C q. Find when q is an heir.
d) Let M < N andp € S(M),q € S(N),p C q. Find when q is an coheir.

Definition. Let M < N and g € S(N). Say q is M-invariant if Vf € Aut(N /M)
then q C f(q).

25. a) If q does not split over M then q is M-invariant.
b) if N is strongly homogeneous over M and q is M-invariant then q does not split
over M.

c) In particular q is a global type over a model if and only if it is M-invariant.

26. Let M =T,p e S(M),q e SM).

a) q is an heir of q|u-

b) q is definable over M.

¢) q is M-invariant

d) q is a coheir of q|y.

Forn = DLO__ find which implications fail. Which implications are true for any T ?
Proof. (b= c¢) is always true. If ¢ is definable over M then it does not split over M

by lemma 28(4). If ¢ does not split over M then it is M-invariant by (HW.25.a).
O



