MODEL THEORY II HOMEWORK 7

DAKOTA BLAIR

Theorem (22). Let T be a countable \aleph_1 -categorical theory. If $\mathcal{M} \preccurlyeq \mathcal{N}$ then dim $\mathcal{N} = \dim \mathcal{M} + \dim(\mathcal{N}/\mathcal{M})$.

Proof. Let \mathcal{M}_0 be the prime model of T, $\varphi(x) \in L(\mathcal{M}_0)$ a strongly minimal formula, I a basis for $\varphi(\mathcal{M})$, J a maximally independent set in $\varphi(\mathcal{N}) \setminus \mathcal{M}$ Then from Proposition 22 dim $(\mathcal{N}/\mathcal{M}) = |J|$.

16. Justify Theorem 22 for $|J| \ge \aleph_0$.

Proof.

17. Calculate $I(T_E^{fcp}, \aleph_1)$.

Proof that $I(T_E^{fcp}, \aleph_1) = \aleph_0$. Any \aleph_1 model of T_E^{fcp} must have at least one infinite congruence class. Further any infinite congruence class must have cardinality either \aleph_0 or \aleph_1 . If there are no congruence classes of size \aleph_1 then there must be \aleph_1 congruence classes of cardinality \aleph_0 . This defines a single isomorphism class, say A_0 , and is characterized by having no \aleph_1 congruence classes and \aleph_1 many \aleph_0 classes.

Let $m = \aleph_1$ or $m \in \omega + 1$ such that m > 0. Similarly let $n = \aleph_1$ or $n \in \omega + 1$ such that n > 0. Note then there are $|\aleph_0 \cdot \aleph_0| = \aleph_0$ choices for (m, n). There is exactly one corresponding isomorphism class corresponding to a model with exactly n distinct \aleph_0 classes and exactly m distinct \aleph_1 classes. Assume two models \mathcal{M}_1 and \mathcal{M}_2 correspond to the same pair (m, n). Then any partial elementary map fpreserving the finite equivalence classes may be extended to an isomorphism. Let the \aleph_0 and \aleph_1 congruence classes of \mathcal{M}_1 be $\{a_i\}_{i\in {}^1I_0}$ and $\{a_i\}_{i\in {}^1I_1}$ respectively. Similarly let the \aleph_0 and \aleph_1 congruence classes of \mathcal{M}_2 be $\{b_i\}_{i\in {}^2I_0}$ and $\{b_i\}_{i\in {}^2I_1}$ respectively. Define ${}^1I = {}^1I_0 \cup {}^1I_1$ and ${}^2I = {}^2I_0 \cup {}^2I_1$. Further define $g_1 : \mathcal{M}_1 \to {}^1I$ be the function which gives the index in 1I of the congruence class of \mathcal{M}_1 containing the given element. Define $g_2 : \mathcal{M}_2 \to {}^2I$ similarly. Then $F : \mathcal{M}_1 \to \mathcal{M}_2$ will define an isomorphism when the following condition is satisfied: if $m \in \mathcal{M}_1, \alpha \in \{0, 1\}$ and $g_1(m) \in {}^1I_\alpha$ then F(m) = f(m) or $g_2(F(m)) = f_\alpha(g_1(m))$.

Note that the isomorphism class of each such pair is distinct from A_0 . Further two models \mathcal{M}_1 and \mathcal{M}_2 such that their corresponding pairs are distinct, that is $(m_1, n_1) \neq (m_2, n_2)$, define two distinct isomorphism classes. This is because any infinite congruence class must map to a class of the same cardinality. But if either $m_1 \neq m_2$ or $n_1 \neq_2$ then $|{}^1I_0| \neq |{}^2I_0|$ or $|{}^1I_1| \neq |{}^2I_1|$ which prevents the construction of an elementary bijection from \mathcal{M}_1 to \mathcal{M}_2 . Then each pair (m, n) corresponds to a unique isomorphism class, say $A_{(m,n)}$.

Therefore A_0 and $A_{(m,n)}$ define \aleph_0 distinct isomorphism classes. These classes exhaust all \aleph_1 models of T_E^{fcp} as any other models would have a different cardinality. Hence $I(T_E^{\text{fcp}}, \aleph_1) = \aleph_0$.

18. Show that \mathcal{M} as in Lemma 23 (1) is ω -saturated if and only if dim $\varphi(\mathcal{M})$ is infinite for some (all) strongly minimal φ over \mathcal{M} .

19 (optional). Explore ω -stable T where Lemma 23 holds

Definition. A M model is ω -homogeneous if for all $\overline{a} \equiv_M \overline{b}$ and a_0 there exists a b_0 such that $\overline{a}a_0 \equiv_M \overline{b}b_0$.

Theorem (Baldwin-Lachlan). A countable theory T is κ -categorical if and only if T is ω -stable without Vaughtian Pairs.

20. Every model of a countable \aleph_1 -categorical theory is ω -homogeneous.

Proof. By the Baldwin-Lachalan theorem T is ω -stable. Let $\overline{a}, \overline{b}, a_0 \in \mathcal{M}$ such that $\overline{a} \equiv_M \overline{b}$. If \mathcal{M} is ω -saturated then $\operatorname{tp}(a_0/\overline{a})$ is realized in \mathcal{M} by some element b_0 . Thus $\overline{a}a_0 \equiv \overline{b}b_0$. If \mathcal{M} is uncountable then it is ω -saturated by categoricity. Therefore the only case remaining is when \mathcal{M} is countable and not ω -saturated. In this case,

21	. Show	there	is a	natural	injection of	of M i	$nto S_1$	(B) for	$r \ M \subset$	В.	Identify	М	with
its	image	and le	et \overline{M}	be its,	topological,	closu	re in	$S_1(B).$	Show	that	$q \in S_1(I$	3)	is in
\overline{M}	if and	only i	f q is	s a cohe	vir of $q _M$.								

Proof. Let $f: M \to S_1(B)$ be defined as $f(m) = \operatorname{tp}(m/B)$. Note that this map is well defined as $M \subset B \subset \mathbb{M}$. Note that if $m_1, m_2 \in M$ are distinct then $q_1 = \operatorname{tp}(m_1/B) \neq q_2 = \operatorname{tp}(m_2/B)$ since the formula $x = m_1$ is in q_1 but $x \neq m_1$ is in q_2 . Therefore f is injective.

Let $\overline{M} = \overline{f(M)}$ in $S_1(B)$ and $q \in \overline{M}$. To show that q is a coheir of $q|_M$ we need to see that it is finitely realized in M, that is for each formula $\varphi(x, \overline{b}) \in q$ there is an $m \in M$ such that $\mathbb{M} \models \varphi(m, \overline{b})$. Since q is a complete type it is consistent and therefore finitely consistent.

If q is a coheir of $q|_M$ then for each $\varphi(x, \overline{b}) \in q$ there is an $m \in M$ such that $\mathbb{M} \models \varphi(m, \overline{b}).$

22. Prove that every ultrapower of a type p over M is an heir of p.

Proof. Let U be a nonprincipal ultrafilter on I and M^U and p^U be the ultrapowers of M and p respectively.

$$(p)_M = \bigcup_{m < \omega} \{ \varphi(\overline{x}, \overline{y}) \in L_{n+m} | \exists \overline{a} \in A^m \text{ such that } \varphi(\overline{x}, \overline{a}) \in p \}$$

 p^U is an heir of p if $(p^U)_M = (p)_M$

$$(p^U)_M = \bigcup_{m < \omega} \{ \varphi(\overline{x}, \overline{y}) \in L_{n+m} | \exists \overline{a} \in A^m \text{ such that } \varphi(\overline{x}, \overline{a}) \in p^U \}$$

Let \overline{a} be some realization of p in N where $M \prec N$. then $p^U = \operatorname{tp}((\overline{a}^I/U)/M^U)$ $M \to M^U \ \overline{a} \mapsto \overline{a}^U$

23. Prove $\operatorname{tp}(\overline{a}/M\overline{b})$ is an heir of $\operatorname{tp}(\overline{a}/M)$ if and only if $\operatorname{tp}(\overline{b}/M\overline{a})$ is an coheir of $\operatorname{tp}(\overline{b}/M)$

24. Let T_E^{∞} be the theory of an equivalence relation with infinitely many infinite congruence classes.

- a) Analyze the complete types over $A \subset M \models T_E^{\infty}$, especially A = M.
- b) Analyze the definable complete types over $A \subset M \models T_E^{\infty}$.
- c) Let $M \prec N$ and $p \in S(M), q \in S(N), p \subset q$. Find when q is an heir.
- d) Let $M \prec N$ and $p \in S(M), q \in S(N), p \subset q$. Find when q is an coheir.

Definition. Let $\mathcal{M} \prec \mathcal{N}$ and $q \in S(N)$. Say q is \mathcal{M} -invariant if $\forall f \in Aut(\mathcal{N}/\mathcal{M})$ then $q \subset f(q)$.

25. a) If q does not split over \mathcal{M} then q is \mathcal{M} -invariant.

- b) if \mathcal{N} is strongly homogeneous over \mathcal{M} and q is \mathcal{M} -invariant then q does not split over \mathcal{M} .
- c) In particular q is a global type over a model if and only if it is \mathcal{M} -invariant.

26. Let $\mathcal{M} \models T, p \in S(\mathcal{M}), q \in S(\mathbb{M})$.

- a) q is an heir of $q|_M$.
- b) q is definable over M.
- c) q is \mathcal{M} -invariant
- d) q is a coheir of $q|_M$.

For $\eta \models DLO_{--}$ find which implications fail. Which implications are true for any T?

Proof. $(b \Rightarrow c)$ is always true. If q is definable over M then it does not split over M by lemma 28(4). If q does not split over M then it is \mathcal{M} -invariant by (HW.25.a).