INTERPRETABILITY

DAKOTA BLAIR

Definition 0.1 (Interpretation). Let L and K be languages. Let \mathcal{M} be an L-structure and \mathcal{N} be a K-structure. If \mathcal{M}^* is an L^* -structure, where $K \subset L^*$ such that there is a map $\cdot^* : L \to L^*$ such that $\mathcal{M} \models \varphi \iff \mathcal{M}^* \models \varphi^*$ then \mathcal{M}^* and every structure isomorphic to it is an **interpretation** of \mathcal{M} in \mathcal{N} .

Remark 0.1. By the interpretation lemma, to define the map \cdot^* it suffices to show that every constant, function and relation of L is definable in K.

Example 0.2. Interpreting $\mathbb{C} = (\mathbb{C}, 0, 1, +, -, \cdot)$ in \mathbb{R} as a $(\mathbb{R}, 0, 1, +, -, \cdot)$ structure.

Given $x \in \mathbb{R}$ denote by x^{-1} the unique real number y such that xy = 1. Note that addition (+(z, u, v)), 0, multiplication $(\cdot(z, u, v))$, 1 and inverses are definable, in particular, if $0^* = (0, 0)$ and $1^* = (1, 0)$ then

$$+(z,u,v) \stackrel{*}{\longmapsto} \varsigma(x,y,a,b,c,d) \iff (x=a+c) \land (y=b+d)$$

$$\cdot (z,u,v) \stackrel{*}{\longmapsto} \mu(x,y,a,b,c,d) \iff (x=ac-bd) \land (y=ad+bc)$$

$$\exists^{=1} z'(zz'=1) \stackrel{*}{\longmapsto} \iota(x,y,a,b) \iff \exists^{=1} xy(x=a(aa+bb)^{-1}) \land (y=-b(aa+bb)^{-1}).$$

We therefore may use the following abbreviations for these operations, understanding (a, b) to be a + bi:

$$(a,b) + (c,d) = (a+c,b+d)$$
$$(a,b)(c,d) = (ac-bd,ad+bc)$$
$$(a,b)^{-1} = (a(aa+bb)^{-1}, -b(aa+bb)^{-1}).$$

Example 0.3. Interpreting linear orders in graphs as $\{R\}$ -structures.

Let (x, y, u, v, w) be the formula asserting that x, y, u, v and w are distinct, there are edges (x, u), (u, v), (u, w) and (v, y) and these are the only edges involving vertices u, v and w. Define (x, y, u, v) in a similar fashion. Now define (x, y, u, v) as $\exists uvw \land (z, u, v, w)$ and $(x, y, u, v) \land (z), (x, v), (z), (z)$ analogously. Finally, let $S = \{ (x, v), (x,$

If (A, <) is a linear order then define a graph G_A such that for each $(a, b) \in A^2$

are subgraphs of G_A . Further construct G_A so that these are the only edges which involve any x_i^a or $y_i^{a,b}$.

Lemma 0.4. If (A, <) is a linear order then for all vertices $x \in G_A$ there is exactly one $\varphi(x) \in S$ such that $G_A \models \varphi(x)$.

Let T be the theory in the language of graphs with the following axioms:

- (1) R is symmetric and irreflexive
- (2) Exactly one $\varphi \in S$ is true for every x.
- (3) If $\overset{\bullet}{\nearrow}(x)$ and $\overset{\bullet}{\nearrow}(y)$ then $\neg R(x,y)$.
- (4) If $\exists uvw \wedge (x, y, u, v, w)$ then $\forall u_1v_1w_1 \neg \wedge (y, x, u_1, v_1, w_1)$.
- (5) If $\exists uvw \land (x, y, u, v, w)$ and $\exists u_1v_1w_1 \land (y, z, u_1, v_1, w_1)$ then $\exists u_2v_2w_2 \land (x, z, u_2, v_2, w_2)$.
- (6) If X(x) and X(y) then either x = y, $\exists uvw \land (x, y, u, v, w)$ or $\exists uvw \land (y, x, u, v, w)$
- (7) If $\dot{\underline{L}}(x, u, v, w) \wedge \dot{\underline{L}}(x, u_1, v_1, w_1)$ then $u = u_1$ and $v = v_1 \wedge w = w_1$ or $v = w_1 \wedge w = v_1$.
- (8) If $(x, y, u, v, w) \land (x, y, u_1, v_1, w_1)$ then $u = u_1, v = v_1$ and $w = w_1$.

Remark 0.5. If (A, <) is a linear order then $G_A \models T$.

Remark 0.6. We may also interpret other common order-related axioms in this language. Using the interpretation map above we see that density $(\forall xy(x < y) \rightarrow \exists z(x < z \land z < y))$ becomes:

$$\forall xy \stackrel{\P}{\searrow} (x) \land \stackrel{\P}{\searrow} (y) \land \exists uvw (x, y, u, v, w) \rightarrow$$

$$\exists z \stackrel{\P}{\searrow} (z) \land$$

$$\exists u_x v_x w_x (u_x) \land (v_x) \land (w_x) \land (x, z, u_x, v_x, w_x) \land$$

$$\exists u_y v_y w_y (u_y) \land (v_y) \land (v_y) \land (z, y, u_y, v_y, w_y).$$