ARITHMETIC COMBINATORICS HOMEWORK

DAKOTA BLAIR

Let $\mathbb P$ be the set of primes.

1. Prove that for four pairwise tangent circles their respective curvatures are related by

$$2(a_1^2 + a_2^2 + a_3^2 + a_4^2) = (a_1 + a_2 + a_3 + a_4)^2.$$

Proof. Let the circles be centered at x_i , with radii r_i and curvature a_i . Without losing generality let $x_1 = (0, 0)$. Let c_i be the vectors connecting x_1 to x_i . This results in 3 nonzero vectors in \mathbb{R}^2 therefore they are linearly dependent, that is

$$\det((x_i x_j)) = \begin{vmatrix} x_2 \cdot x_2 & x_2 \cdot x_3 & x_2 \cdot x_4 \\ x_3 \cdot x_2 & x_3 \cdot x_3 & x_3 \cdot x_4 \\ x_4 \cdot x_2 & x_4 \cdot x_3 & x_4 \cdot x_4 \end{vmatrix} = 0.$$

 But

$$\det((x_i x_j)) = \frac{4}{a_1 a_2 a_3 a_4} \left(\left(\sum a_i \right)^2 - 2 \sum a_i^2 \right) = 0$$

which is true if and only if

$$\left(\sum a_i\right)^2 = 2\sum a_i^2$$

as was claimed.

r	-1
L	_