ARITHMETIC COMBINATORICS HOMEWORK 3

DAKOTA BLAIR

Let $e(x) = e^{2\pi i x}$. **1.** Let $\gamma \in SL_2(\mathbb{R}), \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \in \mathbb{H}$. Show $\Im(\gamma z) = \frac{\Im(z)}{|cz+d|^2}$

Proof. Let z = u + iv with $\Im(z) = v$. Then

$$\begin{split} \Im(\gamma z) &= \Im\left(\frac{az+b}{cz+d}\right) = \Im\left(\frac{au+b+aiv}{cu+d+civ}\right) \\ &= \Im\left(\frac{(au+b+aiv)(cu+d-civ)}{|cz+d|^2}\right) \\ &= \Im\left(\frac{i(ad-bc)v+ac(u^2+v^2)+(ad+bc)u+bd}{|cz+d|^2}\right) \\ &= \frac{v}{|cz+d|^2} \\ \Im(\gamma z) &= \frac{\Im(z)}{|cz+d|^2}. \end{split}$$

Thus \mathbb{H} is invariant under this action of $SL_2(\mathbb{R})$.

2. If f and f' are modular forms of weight 2k and 2k' respectively, then ff' is a modular form of weight 2k + 2k'.

Proof. The additivity of the weights follows directly from the definition of e(z). If f and f' are holomorphic at ∞ then they are holomorphic in a neighborhood of infinity, that is, a region of the form $\{z \in \hat{\mathbb{C}} | |z| > R\}$. Since the product of two holomorphic functions is holomorphic, ff' is also holomorphic in this region, and is therefore holomorphic at ∞ .

3. Let
$$\gamma \in SL_2(\mathbb{R})$$
, $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show $\frac{d\gamma}{dz} = (cz+d)^{-2}$ and
 $f(z) = (cz+d)^{-2k} f(\gamma z) \iff \frac{f(\gamma z)}{f(z)} = \left(\frac{d\gamma}{dz}\right)^{-k} \iff f(\gamma z) d\gamma^k = f(z) dz^k.$

Proof. Note

$$\frac{d\gamma}{dz} = \frac{(cz+d)a - c(az+b)}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} = (cz+d)^{-2}.$$

The rest follows immediately upon the observation that

$$\left(\frac{d\gamma}{dz}\right)^{-k} = (cz+d)^{2k}.$$

4. Let
$$G = (SL_2(\mathbb{Z})/\langle \pm 1 \rangle), \ \gamma \in SL_2(\mathbb{Z}), \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ w_1, w_2 \in \mathbb{C}, \Im \frac{w_1}{w_2} > 0 \text{ and}$$

 $\gamma(w_1, w_2) = (w'_1, w'_2) = (aw_1 + bw_2, cw_1 + dw_2).$

- (i) Show $\gamma(w_1, w_2)$ is a basis for $\Gamma(w_1, w_2)$.
- (ii) Note that this implies $\Im \frac{w'_1}{w'_2} > 0$ and hence they are a basis for $\Gamma(w'_1, w'_2)$.
- (iii) Show $\alpha = (w_1, w_2)$ and $\beta = (w'_1, w'_2)$ define the same lattice if and only if there is a $\gamma \in SL_2(\mathbb{Z})$ such that $a = \gamma b$.
- (iv) Define $\mu((w_1, w_2)) = w'_1/w'_2$. Show that μ gives a bijection from all lattices to \mathbb{H}/G .

Proof. By assumption $\Im(\frac{w_1}{w_2}) > 0$, therefore w_1 and w_2 are linearly independent in \mathbb{C} as a real vectorspace. The second statement follows from the fact that $SL_2(\mathbb{Z})$ is a group and therefore γ has an inverse. Therefore the system $\gamma \alpha = \beta$ can be solved. Thus $\Im(\mu(\alpha)) > 0$ is true if and only if $\Im(\mu(\beta)) > 0$. Further, for the unproven direction of the third statement, if α and β define the same lattice then their components may be written as integer linear combinations of one another and the corresponding matrix gives the necessary γ . Finally, to note that μ is well-defined it is necessary only to show that factoring by \mathbb{C}^{\times} commutes with factoring by G.