1 The p-1 Factoring Method

Another factoring algorithm, the p-1 method, is not a general-purpose factoring algorithm, but it can be used to quickly find factors of n that are of a certain form. Additionally, this method is the basis for many modern factoring techniques, especially those used in elliptic curve analysis. Also GIMPS uses the p-1 algorithm for its search. Keep in mind the p-1 algorithm only finds factors of a certain type and to explain that type first a definition must be established.

Definition 1 Let B be a positive integer. A positive integer n will be said to be B-smooth if all the prime divisors of n are less than or equal to B. We will say that n is B-powersmooth if all prime powers dividing n are less than or equal to B.

Suppose *p* is an unknown divisor of *N*. Consider *a* an integer such that (a, N) = 1 and a > 1. So $a^{p-1} \equiv 1 \mod p$. Now let lcm[1..*B*] be the least common multiple of the integers from 1 to *B*. Suppose p - 1 is *B*-powersmooth. Then p - 1 | lcm[1..B], and so $a^{\text{lcm}[1..b]} \equiv 1 \mod p$. Thus

$$(a^{\text{lcm}[1..B]} - 1, N) > 1$$

Now it is highly unlikely that $(a^{\text{lcm}[1..B]} - 1, N) = N$ if one gradually increases *B* since this implies for all p_i dividing *n* that $Q \max_{q_j|p_i} q_j$ for some common *Q* where each p_i and q_j is prime. The algorithm is essentially as follows (this form of the p - 1 algorithm is due to Pollard):

The p-1 Algorithm: Input N and a bound B. Next form a list of primes $p[1], \ldots, p[k]$ which are all primes up to B.

1. [Initialize]	Set $x \leftarrow 2, y \leftarrow x, c \leftarrow 0, i \leftarrow 0$, and $j \leftarrow i$.
2. [Next prime]	Set $i \leftarrow i + 1$.
-	If $i > k$, compute $g \leftarrow (x - 1, N)$.
	If $g = 1$ output "Splitting N failed."
	Otherwise $i \leftarrow j, x \leftarrow y$ go to step 5.
	Otherwise if $i \le k$ set $q \leftarrow p[i], q_1 \leftarrow q, l \leftarrow \lfloor B/q \rfloor$.
3. [Compute power]	While $q_1 \leq l$, set $q_1 \leftarrow qq_1$
	Then set $x \leftarrow x^{q_1} \mod N$, $c \leftarrow c + 1$ and if $c < 20$ go to step 2.
4. [Compute GCD]	Set $g \leftarrow (x - 1, N)$.
	If $g = 1$, set $c \leftarrow 0$, $j \leftarrow I$, $y \leftarrow x$, and go to step 2.
	Otherwise set $i \leftarrow j$ and $x \leftarrow y$.
5. [Backtrack]	Set $i \leftarrow i + 1, q \leftarrow p[i]$ and $q_1 \leftarrow q$.
6. [Finished?]	Set $x \leftarrow, g \leftarrow (x - 1, N)$.
	If $g = 1$, then set $q_1 \leftarrow qq_1$
	If $q_1 \leq B$, go to step 6.
	Otherwise go to step 5.
	Otherwise
	If $g < N$ then output g and terminate.
	Otherwise if $g = N$ then
	output that the algorithm failed and terminate.