REARRANGING SERIES

CHRIS ARETTINES, DAKOTA BLAIR, JOSIAH SUGARMAN

Hypothesis. Let X be an abelian topological group and $\sigma \in S_{\mathbb{N}}$. Let $a = \{a_i\}_{i < \omega} \subset X$ be a sequence. Then the series corresponding to a converges and

$$\sum_{i<\omega} a_i = \sum_{i<\omega} a_{\sigma(i)}$$

if and only if σ has some easily stated property.

Remark. Any permutation σ such that $|i - \sigma(i)|$ is bounded preserves every series.

Remark. The permutation

$$\sigma = \prod_{i < \omega} (b_{2i} b_{2i-1})$$

preserves every series where $\{b_i\}_{i < \omega}$ is an increasing sequence such that $b_{2n} - b_{2n-1} > 2$ for infinitely many n.

Proof. For any N such that $b_{2n-1} < N < b_{2n}$ we have that

$$\sum_{i=0}^{N} a_{i} - \sum_{i=0}^{N} a_{\sigma(i)} = \sum_{i \in \text{Dom } \sigma \cap N} a_{i} - \sum_{i \in \text{Dom } \sigma \cap N} a_{\sigma(i)}$$
$$= \sum_{i \in \text{Dom } \sigma \cap N} a_{i} - a_{\sigma(i)}$$
$$\sum_{i=0}^{N} a_{i} - \sum_{i=0}^{N} a_{\sigma(i)} = \sum_{i=0}^{N} a_{b_{2i}} - a_{b_{2i-1}} = 0.$$

Therefore every partial sum is the same and so the series is the same.

Remark. The previous permutation can be chosen such that $|i - \sigma(i)|$ is not bounded.

Remark. There exists a permutation which is the product of transpositions, but does not preserve every series.

Proof. We build the permutation inductively, that is for each n we will construct τ_n , either a transposition or the identity, such that

$$\sigma = \prod_{i=1}^{\infty} \tau_n$$
 and $\sum_{n=1}^{\infty} a_{\sigma(n)} = 0.$

Let $a_n = (-1)^{n+1}/n$. Define $\tau_0 = e$. At the *N*th stage assume that we have defined τ_n for $n \leq N$. Define

$$\sigma_n = \prod_{i=1}^N \tau_i \quad \text{and} \quad c_n = \sum_{i=1}^n b_n$$

Finally let f_N be the last index such that $\sigma_N \cap \mathbb{N} \setminus f_N$ is the identity. If $N < f_n$ then define $\tau_n = e$ for $N \leq n \leq f_n$ and move to the $f_n + 1$ stage.

Then compute
$$c_N = \sum_{n=1}^N a_{\sigma_N(n)}$$
. If $c_N > 0$ then let τ_3
while $\sum_{n=1}^N a_n > 0$

Remark. There exists a permutation which has unbounded cycle length and preserves all series. In particular

$$\prod_{i=1}^{\infty} \left(\binom{i}{2}, \binom{i}{2} + 1, \dots, \binom{i+1}{2} - 1 \right)$$

***. Given a sequence $\{a_n\}$, and a triangular number t

$$\sum_{i=1}^t a_n = \sum_{i=1}^t a_{\sigma(n)}.$$

Therefore if the permuted series converges, it converges to the same value as the original series. Let $\epsilon > 0$, $A_n = \sum_{i=1}^n a_n$ and $A'_n = \sum_{i=1}^n a_{\sigma(n)}$. By the Cauchy criterion there is an N such that $|A_n - A_m| < \epsilon$ for all n, m > N. Then N is between two triangular numbers, t and N_0 . Then N_0 works for the Cauchy property.

[This is not a proof since we could have easily done something similar with cycles of length 2^n which is demonstrably not Cauchy.

Remark. There exists a permutation with an infinite cycle that preserves all series, namely

$$\sigma = (\cdots 53124\cdots)$$

We are also interested in sets $B \subset \mathbb{N}$, identified with their characteristic function $B \in 2^{\omega}$, such that

$$F(B) = \sum_{n=0}^{\infty} (-1)^{B(n)} n$$

We use the following notation:

$$\eta_B(x) = |B \cap [0, x]| = \sum_{i=0}^{\lfloor x \rfloor} B(n)$$
$$\delta(B) = \lim_{x \to \infty} \frac{\eta_B(x)}{x}$$

Remark. It is necessary that $\delta(B) = \frac{1}{2}$.

***. WLOG $\delta(B) < \frac{1}{2}$. WLOG B(N) = 0. Then for any sufficiently large N we have that for every M > 0 $|B_M| < M$ where $B_M = B \cap [N, N + 2M]$. Then for every $1 \in B_M$ there is a preceeding 0. Then we may underestimate the sum by making all these 1s equal in magnitude to the location of their preceeding 0. Then in the interval [N, N + 2M] these values cancel out but there are a positive number of unmatched 0s. This series will be bounded below by $\sum_{n=1}^{\infty} \frac{1}{nM}$ it will diverge. **Remark.** It is not sufficient that $\delta(B) = \frac{1}{2}$.

Proof. Consider the set $B = \{b \in \mathbb{N} | b is even or a prime\}$. Then $\delta(B) = 1/2$ but F(B) diverges.