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Notation

The phrase almost all means measure zero, therefore any cofinite set in an infinite

set comprises almost all the set.

pA,M(n) =

{

n =
∑

a∈A

maa

∣

∣

∣
ma ∈ M ∪ 0 and ma = 0 for almost all a.

}

Problem. How does pA,M(n) behave, given A,M ⊂ N?

Problem. How does pA,M(n) grow asymptotically?

Problem. What growth rates are possible under the assumption that pA,M(n) ≥ 1 for

all sufficiently large integers?

• In [ESG09] Euler showed that if A = {2i}i<ω and M = 1 then pA,M(n) = 1

for all n.

• In [Ste58] Stern showed that if A = {2i}i<ω and M = 2 then pA,M(n) = s(n),

the Stern sequence, defined recursively by s(0) = 1, s(2n+ 1) = s(n), s(2n) =

s(n) + s(n− 1).

• In [ADRW11] Reznick et. al. showed that if A = {bi}i<ω and M is finite then

pA,M(n) has a recursive definition similar to the Stern sequence.

• In [Pro00] Protasov showed that if A = {bi}i<ω and M = d then pA,M(n) has

polynomial growth and further explored the case of b = 2 in [Pro04].

• In [CW12] Canfield and Wilf showed that if A is infinite and M = N then

pA,M(n) is superpolynomial, that is, pA,M(n) = O(nk) is false for all k.

• In [LN11] Ljujic and Nathanson showed that if A and M are infinite then

pA,M(n) can be 1 for arbitrarily large n.

• In [Alo12] Alon showed that there exist infinite A and M such that pA,M(n) =

1 for all n.

Remark. If A = N and M = 1 then pA,M(n) is the number of partitions of n into

distinct parts
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M = 1 M = 2 M infinite M = N

A

A infinite [LN11], [Alo12] superpolynomial [CW12]

A = {2i}i<ω 1 [ESG09] s(n) [Ste58] b∞(n) [Knu66b]

A = N p(n) [HR18]

Theorem. Let A = {2i}i<ω and M = N and define b∞(n) = pA,M(n). Then for all k

and sufficiently large n,

nk < b∞(n).

Proof. Let N be such that
(

2 + 1

N

)k+1
≤ 2k+1 + 1, and let

a = min

{

b∞(2n)

nk+1

∣

∣

∣
N ≤ n ≤ 2N

}

.

Then by induction b∞(2n) ≥ ank+1 for all n ≥ N since this is true for N ≤ n ≤ 2N

and if n > 2N

b∞(2n) = b∞(2(n− 1)) + b∞(n)

≥ a(2(n− 1))k+1 + ank+1

≥ a
(

(2(n− 1))k+1 + (n− 1)k+1
)

= a
(

(2(n− 1))k+1 + (n− 1)k+1
)

≥ a

(

1 +
1

2N

)k+1

(n− 1)k+1

≥ a

(

1 +
1

n− 1

)k+1

(n− 1)k+1 = ank+1

b∞(2n) ≥ ank+1.

If we choose Nk ≥ 1

a
and Nk ≥ N then the proof is complete.
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