RESULTS ON RESTRICTED PARTITIONS

DAKOTA BLAIR

Notation

The phrase almost all means measure zero, therefore any cofinite set in an infinite set comprises almost all the set.

$$
p_{A, M}(n)=\left\{n=\sum_{a \in A} m_{a} a \mid m_{a} \in M \cup 0 \text { and } m_{a}=0 \text { for almost all } a .\right\}
$$

Problem. How does $p_{A, M}(n)$ behave, given $A, M \subset \mathbb{N}$?

Problem. How does $p_{A, M}(n)$ grow asymptotically?

Problem. What growth rates are possible under the assumption that $p_{A, M}(n) \geq 1$ for all sufficiently large integers?

- In [ESG09] Euler showed that if $A=\left\{2^{i}\right\}_{i<\omega}$ and $M=1$ then $p_{A, M}(n)=1$ for all n.
- In Ste58 Stern showed that if $A=\left\{2^{i}\right\}_{i<\omega}$ and $M=2$ then $p_{A, M}(n)=s(n)$, the Stern sequence, defined recursively by $s(0)=1, s(2 n+1)=s(n), s(2 n)=$ $s(n)+s(n-1)$.
- In ADRW11] Reznick et. al. showed that if $A=\left\{b^{i}\right\}_{i<\omega}$ and M is finite then $p_{A, M}(n)$ has a recursive definition similar to the Stern sequence.
- In Pro00 Protasov showed that if $A=\left\{b^{i}\right\}_{i<\omega}$ and $M=d$ then $p_{A, M}(n)$ has polynomial growth and further explored the case of $b=2$ in [Pro04].
- In CW12 Canfield and Wilf showed that if A is infinite and $M=\mathbb{N}$ then $p_{A, M}(n)$ is superpolynomial, that is, $p_{A, M}(n)=O\left(n^{k}\right)$ is false for all k.
- In LN11 Ljujic and Nathanson showed that if A and M are infinite then $p_{A, M}(n)$ can be 1 for arbitrarily large n.
- In Alo12 Alon showed that there exist infinite A and M such that $p_{A, M}(n)=$ 1 for all n.

Remark. If $A=\mathbb{N}$ and $M=1$ then $p_{A, M}(n)$ is the number of partitions of n into distinct parts

	$M=1$	$M=2$	M infinite	$M=\mathbb{N}$
A				
A infinite			[LN11], [Alo12]	superpolynomial [CW12]
$A=\left\{2^{i}\right\}_{i<\omega}$	1 [ESG09]	$s(n)$ Ste58]		$b_{\infty}(n)$ Knu66b
$A=\mathbb{N}$				$p(n)$ HR18]

Theorem. Let $A=\left\{2^{i}\right\}_{i<\omega}$ and $M=\mathbb{N}$ and define $b_{\infty}(n)=p_{A, M}(n)$. Then for all k and sufficiently large n,

$$
n^{k}<b_{\infty}(n)
$$

Proof. Let N be such that $\left(2+\frac{1}{N}\right)^{k+1} \leq 2^{k+1}+1$, and let

$$
a=\min \left\{\left.\frac{b_{\infty}(2 n)}{n^{k+1}} \right\rvert\, N \leq n \leq 2 N\right\} .
$$

Then by induction $b_{\infty}(2 n) \geq a n^{k+1}$ for all $n \geq N$ since this is true for $N \leq n \leq 2 N$ and if $n>2 N$

$$
\begin{aligned}
b_{\infty}(2 n) & =b_{\infty}(2(n-1))+b_{\infty}(n) \\
& \geq a(2(n-1))^{k+1}+a n^{k+1} \\
& \geq a\left((2(n-1))^{k+1}+(n-1)^{k+1}\right)=a\left((2(n-1))^{k+1}+(n-1)^{k+1}\right) \\
& \geq a\left(1+\frac{1}{2 N}\right)^{k+1}(n-1)^{k+1} \\
& \geq a\left(1+\frac{1}{n-1}\right)^{k+1}(n-1)^{k+1}=a n^{k+1} \\
b_{\infty}(2 n) & \geq a n^{k+1} .
\end{aligned}
$$

If we choose $N_{k} \geq \frac{1}{a}$ and $N_{k} \geq N$ then the proof is complete.

Some references
AS64 Lat06 Rez90 Röd70]

References

[ADRW11] K. Anders, M. Dennison, B. Reznick, and J. Weber, Congruence properties of binary partition functions, ArXiv e-prints (2011).
[Alo12] N. Alon, Restricted integer partition functions, 2012.
[AS64] Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, no. 55, U.S. Government Printing Office, Washington, D.C., 1964, Corrections appeared in later printings up to the 10th Printing, December, 1972. Reproductions by other publishers, in whole or in part, have been available since 1965. MR MR0167642 (29 \#4914)
[CW12] E. Rodney Canfield and Herbert S. Wilf, On the growth of restricted integer partition functions, Partitions, q-Series, and Modular Forms, Developments in Mathematics, vol. 23, Springer New York, 2012, pp. 39-46 (English).
[ESG09] Leonhard Euler, Andreas Speiser, and Schweizerische Naturforschende Gesellschaft., Introductio in analysin infinitorum, 1748, Birkhäuser Verlag, Basel, Switzerlands, 2009 (Latin), ID: 682031281.
[HR18] G. H. Hardy and S. Ramanujan, Asymptotic formulan combinatory analysis, Proceedings of the London Mathematical Society s2-17 (1918), no. 1, 75-115.
[Knu66a] Donald E. Knuth, Correction: "An almost linear recurrence", no. 4, 354-354, See Knu66b. MR "34 \#5741"
[Knu66b] Donald F. Knuth, An almost linear recurrence, no. 2, 117-128, See correction Knu66a]. MR "33 \# 7317 "
[Lat06] Matthieu Latapy, Partitions of an integer into powers, DMTCS Proceedings 0 (2006), no. 1.
[LN11] Z. Ljujic and M. B. Nathanson, On a partition problem of Canfield and Wilf, ArXiv e-prints (2011).
[Pro00] V Yu Protasov, Asymptotic behaviour of the partition function, Sbornik: Mathematics 191 (2000), no. 3, 381.
[Pro04] V. Yu. Protasov, On the asymptotics of the binary partition function, Mathematical Notes 76 (2004), 144-149, 10.1023/B:MATN.0000036752.47140.98.
[Rez90] B. Reznick, Some binary partition functions.
[Röd70] Öystein Rödseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos. Soc. 68 (1970), 447-453. MR 0260695 (41 \#5319)
[Ste58] Moritz A. Stern, Ueber eine zahlentheoretische Funktion, Journal für die reine und angewandte Mathematik 55 (1858), 193-220.

