PROPERTIES OF STERN-LIKE SEQUENCES

DAKOTA BLAIR

Let c be an ordinal. If c is finite, associate it to the corresponding integer $c=|c|$. This is an overloaded notation, but context will determine what type of object c is being considered at the time. For example in the two cases $0 \in c$ and $0<c$ the symbol c is a set and an integer respectively. Let s be a sequence, that is $s=\left(s_{i}\right)_{i \in I}$. Denote the length of s as $|s|=|I|$. Further if $s=\left(s_{i}\right)_{i \in I}$ and $i^{\prime} \in I$ then $s\left(i^{\prime}\right)=s_{i^{\prime}}$. Denote by $c^{<\omega}$ the set of all finite sequences $s=(s(i))_{i \in|s|}$ where $s(i) \in c$, that is, $c^{<\omega}=$ $\left\{s\left||s|<\omega, s=(s(i))_{i \in|s|}\right.\right.$ where $\left.s(i) \in c\right\}$. Let $s, s^{\prime} \in c^{<\omega}$. Denote concatenation by juxtaposition, that is $s^{\prime \prime}=s s^{\prime}=\left\{s^{\prime \prime}(i)\right\}_{i \in|s|+\left|s^{\prime}\right|}$ where $s^{\prime \prime}(i)=s^{\prime}(i)$ if $i<\left|s^{\prime}\right|$ and $s^{\prime \prime}(i)=s\left(i-\left|s^{\prime}\right|\right)$ otherwise. If $s \in c^{<\omega}$ is written adjacent to $i<c$ then i is considered to be a sequence of length 1 and concatenation as defined above applies. Sequences are ordered lexicographically, denoted $\underset{\text { lex }}{<}$ with the added definition that if $|s|<\left|s^{\prime}\right|$ then $s<{ }_{\text {lex }} s^{\prime}$.

Definition (Stern-like sequences). Let $b \geq 2$ be an integer. Define $S_{b}(n)$ recursively with

$$
\begin{aligned}
S_{b}(0) & =S_{b}(1)=\cdots=S_{b}(b-1)=1 \\
S_{b}(b n+i) & =S_{b}(n) \text { for } 0<i<b \\
S_{b}(b n) & =S_{b}(n)+S_{b}(n-1) .
\end{aligned}
$$

Definition (Place Value Partition). Let c be a positive integer and $s \in c^{<\omega}$. Then s is a place value partition base b of n where

$$
n=p v e(s, b)=\sum_{i \in|s|} s(i) b^{i} .
$$

The set of place value partitions of n base b carrying at c is

$$
p v p(n, b, c)=\left\{s \mid n=p v e(s, b), s \in c^{\omega}\right\} .
$$

Further define the number of place value partitions of n base b carrying at c as

$$
\operatorname{pvr}(n, b, c)=|p v p(n, b, c)|
$$

and the frequency of occurences of m from n^{\prime} to $n^{\prime \prime}$ as

$$
\operatorname{pvr} f\left(m, n^{\prime}, n^{\prime \prime}, b, c\right)=\left|\left\{n \mid \operatorname{pvr}(n, b, c)=m, n^{\prime} \leq n \leq n^{\prime \prime}\right\}\right|
$$

Lemma. The usual b-ary partition of n is lexicographically greatest among pvp(n, b, c) when $c \geq b$.

Proof. Let s be the usual b-ary partition of n. If $|s|=1$ then $p v p(n, b, c)=\{s\}$ and the claim is true. Assume that the claim is true for all $\left|s^{\prime}\right|<m$ and that $|s|=m$. Let s^{\prime} be such that $s \neq s^{\prime}$ and $n=p v e\left(s^{\prime}, b, c\right)$. If $\left|s^{\prime}\right|<|s|$ then $s<s_{\text {lex }}^{\prime}$ and there is nothing to show. If $\left|s^{\prime}\right|=|s|$ then either $s^{\prime}(|s|)=s(|s|)$ or not. If $\left|s^{\prime}\right|=|s|$ then s and s^{\prime} share a common prefix, namely y, that is,

$$
s=y w_{s} \quad \text { and } \quad s^{\prime}=y w_{s^{\prime}} .
$$

But then w_{s} is a b-ary partition such that $\left|w_{s}\right|<|s|$, and therefore the induction hypothesis applies. Otherwise $|s|=\left|s^{\prime}\right|$ and $s(|s|) \neq s^{\prime}(|s|)$. If $s^{\prime}(|s|)<s(|s|)$ then $s_{l e x}^{\prime} s$ and there is nothing to show. Finally if $s(|s|)<s^{\prime}(|s|)$ then $p v e\left(s^{\prime}, b\right)>n$ since s is the b-ary representation of n. That is, $n \leq s^{\prime}(|s|) b^{|s|}$. This contradicts our choice of s^{\prime} hence The usual b-ary partition of n is lexicographically greatest element of $p v p(n, b, c)$ when $c \geq b$.

Theorem. For all integers b and n such that $b>1$ and n nonnegative

$$
\operatorname{pvr}(n, b, b+1)=S_{b}(n)
$$

Proof. For brevity let $A_{b}(n)=\operatorname{pvr}(n, b, b+1)$. Note that the claim is true for $n<b$ by definition. Assume the induction hypothesis, that is $A_{b}(m)=S_{b}(m)$, holds for all $m<n$. Let $r \in b$ such that $r \equiv n(\bmod b)$. There are two cases, one where $r=0$ and the other where $r>0$. Let n^{\prime} be such that $n=n^{\prime} b+r, a=A_{b}(n)$ and $a^{\prime}=A_{b}\left(n^{\prime}\right)$. Enumerate the place value representations of n and n^{\prime} as $\left\{s_{i}\right\}_{i \in a}$ and $\left\{s_{i}^{\prime}\right\}_{i \in a^{\prime}}$ respectively.

Assume first that $r>0$. Thus pve $\left(s_{i}^{\prime} r, b\right)=n$ for all $i \in a$ hence $A_{b}\left(n^{\prime}\right) \leq A_{b}(n)$. Note also that $s_{i}^{\prime \prime}=\left(s_{i}(j+1)\right)_{j=0}^{|s|-1} \in \operatorname{pvp}\left(n^{\prime}, b, b+1\right)$ since $p v e\left(s_{i}^{\prime \prime}, b\right)=n^{\prime}$. Further these are distinct because $s_{i}(0)=r$ for all $i \in a$. Therefore $A_{b}(n) \leq A_{b}\left(n^{\prime}\right)$, so

$$
\operatorname{pvr}(n, b, b+1)=A_{b}(n)=A_{b}\left(n^{\prime}\right)=S_{b}\left(n^{\prime}\right)=S_{b}\left(n^{\prime} b+r\right)=S_{b}(n)
$$

when $r>0$.
If $r=0$ then for each i either $s_{i}(0)=0$ or $s_{i}(0)=b$. Partition $p v p(n, b, b+1)$ into

$$
\begin{aligned}
& C_{0}=\operatorname{pvp}(n, b, b+1) \cap\left\{s \in(b+1)^{<\omega} \mid s(0)=0\right\} \quad \text { and } \\
& C_{b}=\operatorname{pvp}(n, b, b+1) \cap\left\{s \in(b+1)^{<\omega} \mid s(0)=b\right\} .
\end{aligned}
$$

If $s_{i}(0)=0$ then $s_{i}^{\prime \prime}=\left(s_{i}(j+1)\right)_{j=0}^{|s|-1} \in A_{b}\left(n^{\prime}\right)$, so $C_{0} \subset p v p\left(n^{\prime}, b, b+1\right)$ and $s_{i}^{\prime \prime}$ is distinct for each i, so $\left|C_{0}\right| \leq A_{b}\left(n^{\prime}\right)$. Further for $s^{\prime} \in C_{b}\left(n^{\prime}\right)$ it is the case that $p v e\left(s^{\prime} 0, b\right)=$ $b n^{\prime}=n$ therefore $s^{\prime} \in C_{0}$ hence $A_{b}\left(n^{\prime}\right) \leq\left|C_{0}\right|$, consequently $\left|C_{0}\right|=A_{b}\left(n^{\prime}\right)$. If $s_{i}(0)=b$ then $s_{i}^{\prime \prime}=\left(s_{i}(j+1)\right)_{j=0}^{|s|-1} \in A_{b}\left(n^{\prime}-1\right)$, so similarly $\left|C_{b}\right|=A_{b}\left(n^{\prime}-1\right)$. Therefore $A_{b}(n)=\left|C_{0}\right|+\left|C_{b}\right|=A_{b}\left(n^{\prime}\right)+A_{b}\left(n^{\prime}-1\right)$.

Lemma.

$$
\operatorname{pvrf}\left(1, \frac{b^{n}-1}{b-1}+1, \frac{b^{n+1}-b}{b-1}, b, b+1\right)=(b-1)^{n}
$$

Proof. This can be seen by induction on n. Define $a_{n}=\frac{b^{n}-1}{b-1}$. Define $F(i, n)=$ $\operatorname{pvr} f\left(i, a_{n}, a_{n+1}-1, b, b+1\right)$. Note that $F(1,0)=1$. Therefore the induction hypothesis is then that $F(1, n)=(b-1)^{n}$. Assume that this holds for all $m \leq n$. Then for all i such that $a_{n}+1 \leq i \leq a_{n+1}$ and $\operatorname{pvr}(i, b, b+1)=S_{b}(i)=1$ it is the case that $b \nmid i$. Otherwise $S_{b}(i)$ would be the sum of two positive values and hence greater than 1. Further, for each such i and $1 \leq j<b$,

$$
a_{n+1}+1 \leq b i+j \leq a_{n+2}
$$

and by the recurrence, $\operatorname{pvr}(b i+j, b, b+1)=S_{b}(b i+j)=S_{b}(i)=1$. Therefore

$$
F(1, n+1)=(b-1) F(1, n)=(b-1)^{n+1}
$$

and the induction hypothesis holds for $n+1$. Thus

$$
\operatorname{pvrf}\left(1, \frac{b^{n}-1}{b-1}+1, \frac{b^{n+1}-1}{b-1}, b, b+1\right)=(b-1)^{n}
$$

for all n.

