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Let c be an ordinal. If c is finite, associate it to the corresponding integer c = |c|.
This is an overloaded notation, but context will determine what type of object c is

being considered at the time. For example in the two cases 0 ∈ c and 0 < c the symbol

c is a set and an integer respectively. Let s be a sequence, that is s = (si)i∈I . Denote

the length of s as |s| = |I|. Further if s = (si)i∈I and i′ ∈ I then s(i′) = si′ . Denote

by c<ω the set of all finite sequences s = (s(i))i∈|s| where s(i) ∈ c, that is, c<ω ={
s
∣∣|s| < ω, s = (s(i))i∈|s| where s(i) ∈ c

}
. Let s, s′ ∈ c<ω. Denote concatenation by

juxtaposition, that is s′′ = ss′ = {s′′(i)}i∈|s|+|s′| where s′′(i) = s′(i) if i < |s′| and

s′′(i) = s(i − |s′|) otherwise. If s ∈ c<ω is written adjacent to i < c then i is

considered to be a sequence of length 1 and concatenation as defined above applies.

Sequences are ordered lexicographically, denoted <
lex

with the added definition that if

|s| < |s′| then s <
lex

s′.

Definition (Stern-like sequences). Let b ≥ 2 be an integer. Define Sb(n) recursively

with

Sb(0) = Sb(1) = · · · = Sb(b− 1) = 1

Sb(bn + i) = Sb(n) for 0 < i < b

Sb(bn) = Sb(n) + Sb(n− 1).

Definition (Place Value Partition). Let c be a positive integer and s ∈ c<ω. Then s

is a place value partition base b of n where

n = pve(s, b) =
∑
i∈|s|

s(i)bi.

The set of place value partitions of n base b carrying at c is

pvp(n, b, c) =
{
s
∣∣n = pve(s, b), s ∈ cω

}
.

Further define the number of place value partitions of n base b carrying at c as

pvr(n, b, c) = |pvp(n, b, c)|

and the frequency of occurences of m from n′ to n′′ as

pvrf(m,n′, n′′, b, c) =
∣∣{n∣∣pvr(n, b, c) = m,n′ ≤ n ≤ n′′

}∣∣
Lemma. The usual b-ary partition of n is lexicographically greatest among pvp(n, b, c)

when c ≥ b.
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Proof. Let s be the usual b-ary partition of n. If |s| = 1 then pvp(n, b, c) = {s} and

the claim is true. Assume that the claim is true for all |s′| < m and that |s| = m.

Let s′ be such that s 6= s′ and n = pve(s′, b, c). If |s′| < |s| then s <
lex

s′ and there is

nothing to show. If |s′| = |s| then either s′(|s|) = s(|s|) or not. If |s′| = |s| then s

and s′ share a common prefix, namely y, that is,

s = yws and s′ = yws′ .

But then ws is a b-ary partition such that |ws| < |s|, and therefore the induction

hypothesis applies. Otherwise |s| = |s′| and s(|s|) 6= s′(|s|). If s′(|s|) < s(|s|) then

s′ <
lex

s and there is nothing to show. Finally if s(|s|) < s′(|s|) then pve(s′, b) > n

since s is the b-ary representation of n. That is, n ≤ s′(|s|)b|s|. This contradicts our

choice of s′ hence The usual b-ary partition of n is lexicographically greatest element

of pvp(n, b, c) when c ≥ b. �

Theorem. For all integers b and n such that b > 1 and n nonnegative

pvr(n, b, b + 1) = Sb(n).

Proof. For brevity let Ab(n) = pvr(n, b, b + 1). Note that the claim is true for n < b

by definition. Assume the induction hypothesis, that is Ab(m) = Sb(m), holds for

all m < n. Let r ∈ b such that r ≡ n (mod b). There are two cases, one where

r = 0 and the other where r > 0. Let n′ be such that n = n′b + r, a = Ab(n) and

a′ = Ab(n
′). Enumerate the place value representations of n and n′ as {si}i∈a and

{s′i}i∈a′ respectively.

Assume first that r > 0. Thus pve(s′ir, b) = n for all i ∈ a hence Ab(n
′) ≤ Ab(n).

Note also that s′′i = (si(j + 1))
|s|−1
j=0 ∈ pvp(n′, b, b + 1) since pve(s′′i , b) = n′. Further

these are distinct because si(0) = r for all i ∈ a. Therefore Ab(n) ≤ Ab(n
′), so

pvr(n, b, b + 1) = Ab(n) = Ab(n
′) = Sb(n

′) = Sb(n
′b + r) = Sb(n)

when r > 0.

If r = 0 then for each i either si(0) = 0 or si(0) = b. Partition pvp(n, b, b + 1) into

C0 = pvp(n, b, b + 1) ∩
{
s ∈ (b + 1)<ω

∣∣s(0) = 0
}

and

Cb = pvp(n, b, b + 1) ∩
{
s ∈ (b + 1)<ω

∣∣s(0) = b
}
.

If si(0) = 0 then s′′i = (si(j+1))
|s|−1
j=0 ∈ Ab(n

′), so C0 ⊂ pvp(n′, b, b+1) and s′′i is distinct

for each i, so |C0| ≤ Ab(n
′). Further for s′ ∈ Cb(n

′) it is the case that pve(s′0, b) =

bn′ = n therefore s′ ∈ C0 hence Ab(n
′) ≤ |C0|, consequently |C0| = Ab(n

′). If

si(0) = b then s′′i = (si(j + 1))
|s|−1
j=0 ∈ Ab(n

′ − 1), so similarly |Cb| = Ab(n
′ − 1).

Therefore Ab(n) = |C0|+ |Cb| = Ab(n
′) + Ab(n

′ − 1).
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Lemma.

pvrf

(
1,

bn − 1

b− 1
+ 1,

bn+1 − b

b− 1
, b, b + 1

)
= (b− 1)n

Proof. This can be seen by induction on n. Define an = bn−1
b−1 . Define F (i, n) =

pvrf(i, an, an+1− 1, b, b+ 1). Note that F (1, 0) = 1. Therefore the induction hypoth-

esis is then that F (1, n) = (b− 1)n. Assume that this holds for all m ≤ n. Then for

all i such that an + 1 ≤ i ≤ an+1 and pvr(i, b, b + 1) = Sb(i) = 1 it is the case that

b - i. Otherwise Sb(i) would be the sum of two positive values and hence greater than

1. Further, for each such i and 1 ≤ j < b,

an+1 + 1 ≤ bi + j ≤ an+2

and by the recurrence, pvr(bi + j, b, b + 1) = Sb(bi + j) = Sb(i) = 1. Therefore

F (1, n + 1) = (b− 1)F (1, n) = (b− 1)n+1

and the induction hypothesis holds for n + 1. Thus

pvrf

(
1,

bn − 1

b− 1
+ 1,

bn+1 − 1

b− 1
, b, b + 1

)
= (b− 1)n

for all n. �


