THE PETRIDIS PROOF OF THE PLÜNNECKE INEQUALITY

DAKOTA BLAIR

Conjecture (Erdős-Szemerédi). For all $\epsilon > 0$ and finite nonempty $A \subset \mathbb{R}$ there exists a $C_{\epsilon} > 0$ such that

$$C_{\epsilon}|A|^{2-\epsilon} \le \max\{|A+A|, |A\cdot A|\}$$

Theorem. Let X, A_1, A_2, \ldots, A_n be finite nonempty subsets of a commutative group. Then

$$|X|^{n-1}|A_1 + A_2 + \dots + A_n| \le |A_1 + X||A_2 + X| \dots |A_n + X|.$$

Theorem ([R] Theorem 2.3, j = 1). Let h be an integer, A, B finite sets in a commutative group and $|A + B| = \alpha |A|$. There is a nonempty $X \subset A$ such that

$$|X + hB| \le \alpha^h |X|.$$

Remark. In [P2011b] Petridis proves a stronger version of this theorem eliminating the need for the Plünnecke inequalities in this proof.

Lemma. Let $A, B_0, \ldots B_{h-1}$ be sets in a commutative group M and define α_i so that $|A + B_i| = \alpha_i |A|$. There is a nonempty $X \subset A$ such that

$$|X + B_0 + \dots + B_{h-1}| \le |X|h^h \left(\prod_{i \in h} \alpha_i\right)$$

Corollary. Let $A, B_0, \ldots B_{h-1}$ be sets in a commutative group M and define α_i so that $|A + B_i| = \alpha_i |A|$. There is a nonempty $X \subset A$ such that

$$|X + B_0 + \dots + B_{h-1}| \le \alpha_0 \alpha_1 \cdots \alpha_{h-1} |X|.$$

Definition (Layered Graph). A directed graph G = G(V, E) is a graph with layers $\{V_i\}_{i\in h+1} \subset V \text{ if } V = \bigcup_{i\in h+1} V_i \text{ is a disjoint union and for every edge } (v,v') \in E \text{ there}$ exists an *i* such that $0 \leq i < h, v \in V_i$ and $v' \in V_{i+1}$.

addition graph, **Definition** (Addition Graph). Let A and B be subsets of a group. Define $G_+(A,B)$ $V_i = (A + iB) \times \{i\}$

$$E_{i} = \left\{ \left((v, i), (v + b, i + 1) \right) \middle| v \in A + iB, b \in B \right\}.$$

Let G = G(V, E) be a graph with

$$V = \bigcup_{i \in h+1} V_i \quad and \quad E = \bigcup_{i \in h} E_i.$$

Then $G_+(A, B) = G$ is the h-layer addition graph of A and B.

Let G be an addition graph. The *Plünnecke condition* is exactly the structure of this graph that is induced by the commutativity of addition.

Definition (Plünnecke Condition). Let G = G(V, E) be a layered graph with layers $\{V_i\}_{i \in h}$. Further let j and k be such that 0 < j < h and $k \geq 2$. Let vertices $u \in V, v \in V_j$ and $\{w_i\}_{i \in k}$ satisfy E(u, v) and $E(v, w_i)$ for all $i \in k$. If this is the case then there exists k distinct vertices $\{v_i\}_{i \in k} \subset V_j$ such that $E(u, v_i)$ and (v_i, w_i) for all $i \in k$.

Definition (Path). Let G = G(V, E) be a graph. A path of length l is a sequence of vertices $(v_i)_{i \in l-1} \in V^l$ such that $E(v_i, v_{i+1})$ for $0 \le i < l$. Let $P_l(G)$ be the set of paths in a graph of length l, and P(G) be the union over all $l \in \mathbb{N}$. Further, given a path $s = (v_i)_{i \in l-1} \in P_l(G)$ let the *i*th node in the path s be denoted by $n_i(s) = v_i$.

Definition (Image, Inverse Image). Let G = G(V, E) be a graph. The lth image of image, $Im^{l}(X)$ X is

$$\operatorname{Im}^{l}(X) = \left\{ v \in V \middle| \text{ there exists } s \in P_{l}(G) \text{ such that } n_{0}(s) \in X \text{ and } n_{l-1}(s) = v \right\}.$$

Further, let $\text{Im}^0(X) = X$, $\text{Im}(X) = \text{Im}^1(X)$. Similarly define the lth inverse image of X as

$$\operatorname{Im}^{-l}(X) = \left\{ v \in V \middle| \text{ there exists } s \in P_l(G) \text{ such that } n_0(s) = v \text{ and } n_{l-1}(s) \in X \right\}.$$

It is now possible to define the magnification ratio.

Definition (Magnification Ratio). Let G be a finite layered graph with layers $\{V_i\}_{i \in h+1}$. magnification The ith magnification ratio of G is ratio,

 $D_i(G), D_h, \mu$

$$D_i(G) = \min\left\{\frac{|\operatorname{Im}^i(Z)|}{|Z|} \middle| Z \neq \emptyset, Z \subset A\right\}.$$

If G is the primary graph under consideration then let $D_h = D_h(G)$ and $\mu = D_h^{1/h}$.

Definition (Reverse Graph). Let G = G(V, E) be a directed graph. The reverse graph $G^T = G^T(V, E^T)$ is a graph such that $E^T(y, x)$ if and only if E(x, y). The reverse graph is also referred to as the transpose, as the adjacency matrix of G is the transpose of the adjacency matrix of G^T .

Definition (Commutative Graph). A graph G is commutative, that is, a Plünnecke graph, if G satisfies the Plünnecke condition and G^T satisfies the Plünnecke condition.

Remark. Therefore if G is commutative then G^T is as well since $(G^T)^T = G$ satisfies the Plünnecke condition.

And now, the statement of the Plünnecke inequalities.

Theorem ([P2011a] Theorem 1.1). Let G be a finite commutative graph. $\mu^i \leq D_i(G)$ the Plünnecke for all $i \in h + 1$.

incoming degree, **Definition** (Vertex Degrees). Let G = G(V, E) be a graph. The incoming degree of outgoing degree, a vertex $v \in V$ is

 $d_G^-(v), d_G^+(v)$

$$d_G^-(v) = \left| \left\{ w \in V \middle| E(v, w) \right\} \right|$$

Similarly the outgoing degree of v is

$$d_G^+(v) = |\{w \in V | E(w, v)\}|.$$

Usually the subscript will be dropped when evaluating the degree of a vertex in the primary graph under consideration.

Lemma ([N] Lemma 7.1). Let G = G(V, E) be a commutative graph with layers $\{V_i\}_{i \in h}$ such that E(u, v). In this case

$$d^+(u) \ge d^+(v)$$
 and $d^-(u) \le d^-(v)$.

Remark. Note that if X and Y are sets of vertices in a graph then

 $\operatorname{Im}(X) \cup \operatorname{Im}(Y) = \operatorname{Im}(X \cup Y).$

Zone, **Definition** (Zone of Flow). Let G = G(V, E) be a graph. For $U \subset V$ define the zone $Z_n^-(V), Z_n^+(V)$ with inflow n of U as

$$Z_{n}^{-}(U) = \left\{ u \in U \middle| d^{-}(u) = n \right\}$$

and similarly define the zone with outflow n of U

$$Z_n^+(U) = \left\{ u \in U \middle| d^+(u) = n \right\}.$$

Lemma ([P2011a] Remark). Let G = G(V, E) be a graph with layers $\{V_i\}_{i \in h}$. Let $i' \in h$ and $k = \sup \{d^-(v) | v \in V_{i'}\}$. If k is finite and for all $i \leq k$

$$X_i = Z_i^-(V_{i'})$$
 and $T_i = \operatorname{Im}(X_i) \setminus \left(\bigcup_{i < j \le k} T_j\right)$ then

(1)
$$\bigcup_{i < j \le k} \operatorname{Im}(X_j) = \bigcup_{i < j \le k} T_j.$$

Lemma (PL3.5a). Let $C \in \mathbb{R}$, H a finite commutative graph with layers $\{U_i\}_{i \in 2}$. If $S \subset U_1 \Rightarrow C|S| \leq |\operatorname{Im}(S)|$ for all $S \subset V$ then

$$|E(U_0, U_1)| \le C^{-1} |E(U_1, U_2)|.$$

Corollary (PL3.7). Let $C \in \mathbb{R}$, H a finite commutative graph with layers $\{U_i\}_{i \in 2}$ such that

$$S \subset U_1 \Rightarrow C|S| \le |\operatorname{Im}(S)|$$
 and $|E(U_0, U_1)| = C^{-1}|E(U_1, U_2)|.$

Further let $k = \max \{ d^{-}(v) | v \in U_1 \}$. If $1 \le i \le k$, $X_i = Z_i^{-}(U_1)$ and $Y_i = Z_i^{-}(U_2)$ then

 $C|X_i| = |Y_i|$ and hence $C|U_1| = |U_2|$.

Lemma (PL3.5b). Let $C_H \in \mathbb{R}$, H a finite commutative graph with layers $\{W_i\}_{i \in 2}$ such that

$$S \subset W_1 \Rightarrow C_H|S| \le |\operatorname{Im}(S)|$$
 and $S \subset W_1 \Rightarrow C_H^{-1}|S| \le |\operatorname{Im}^{-1}(S)|$

Then

$$|E(U_0, U_1)| = C^{-1} |E(U_1, U_2)|.$$

Lemma (PL3.5c). Let $C \in \mathbb{R}$, H a finite commutative graph with layers $\{W_i\}_{i \in 2}$ Assume H is such that for all $S \subset W_1$

 $C|S| \leq |\operatorname{Im}(S)| \quad and \quad C^{-1}|S| \leq |\operatorname{Im}^{-1}(S)|.$

Let $k = \max \{ d^{-}(v) | v \in W_1 \}$. If $1 \le i \le k$, $X_i = Z_i^{-}(W_1)$ and $Y_i = Z_i^{-}(W_2)$ then $C|X_i| = |Y_i|$ and hence $C|W_1| = |W_2|$.

Corollary. Let $C_H \in \mathbb{R}$, H a finite commutative graph with layers $\{U_i\}_{i \in 2}$. Assume H is such that for all $S \subset U_1$

$$C_H|S| \le |\operatorname{Im}(S)|$$
 and $C_H^{-1}|S| \le |\operatorname{Im}^{-1}(S)|.$

Then

$$C_H |U_0| = |U_1|.$$

Lemma ([P2011a] Lemma 3.6). Let $C \in \mathbb{R}$ such that C > 1, H a finite weighted commutative graph with layers $\{U_i\}_{i \in 2}$ and $w(v) = C^{-i}$ for all $v \in U_i$. If U_1 is a separating set of minimum weight then U_0 is a separating set of minimum weight.

Lemma ([P2011a] Lemma 3.3). Let $C \in \mathbb{R}$, G a finite commutative graph with layers $\{V_i\}_{i \in h}$ and $w(v) = C^{-i}$ for all $v \in V_i$. There exists a separating set of minimum weight contained in $V_0 \cup V_h$.

Corollary ([P2011a] Corollary 3.4). Let G be a finite commutative graph with layers $\{V_i\}_{i\in h}$ and $w(v) = \mu^{-i} = D_h(G)^{-i/h}$ for all $v \in V_i$. Let S be a separating set of minimum weight. Then the weight of S is $w(S) = |V_0|$.

Lemma (Direct Product Lemma). If A, B, C, D are nonempty subsets of a group, $|A + B| = \alpha |A|$, and $|C + D| = \beta |C|$ then $|A \times C + B \times D| = \alpha \beta |A \times C|$.

Definition (Layered Graph Product, [R] Definition 4.1). Let G' = G(V', E'), G'' = G(V'', E''), be graphs with layers $\{V'_i\}_{i \in h+1} \subset V'$ and $\{V''_i\}_{i \in h+1} \subset V''$ respectively. The layered product of G' and G'' is G = G(V, E) = G'G'' where $V_i = V'_i \times V''_i$ form the layers of G and for $(u', u''), (v', v'') \in V \times V''$ let E((u', u''), (v', v'')) be true if and only if E'(u', v') and E(u'', v'').

Remark. The layered graph product is a proper subgraph of the usual product graph.

Lemma ([R] Lemma 4.2). The layered graph product of commutative graphs is commutative.

Lemma (Multiplicativity of Magnification Ratios, [R] Lemma 4.3). If G = G(V, E), G' = G(V', E') and G'' = (V'', E'') are graphs with layers $\{V_i\}_{i \in h+1} \subset V$, $\{V'_i\}_{i \in h+1} \subset V'$ and $\{V''_i\}_{i \in h+1} \subset V''$ respectively and G = G'G'' then $D_i(G) = D_i(G')D_i(G'')$ for all $i \in h$.

References

- [N] M. B. Nathanson. Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Springer, New York, 1996.
- [P2011a] G. Petridis. Plünnecke 's inequality http://arxiv.org/abs/1101.2532
- [P2011b] G. Petridis. New proofs of Plünnecke -type Estimates for Product Sets in Groups http://arxiv.org/abs/1101.3507
- [R] I. Z. Ruzsa. Sumsets and structure. In Combinatorial Number Theory and Additive Group Theory. Springer, New York, 2009. http://math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/ Additive-Combinatorics.pdf