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THE PETRIDIS PROOF OF THE PLUNNECKE INEQUALITY
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Conjecture (Erdés-Szemerédi). For all € > 0 and finite nonempty A C R there
exists a Ce > 0 such that

CLAP™ < max{|A + A, |4 - Al}

Theorem. Let X, Ay, Ay, ... A, be finite nonempty subsets of a commutative group.
Then
[ XAy + Ay + - + Ay < AL+ XA + X - A, + X

Theorem ([R] Theorem 2.3, j = 1). Let h be an integer, A, B finite sets in a com-
mutative group and |A + B| = a|A|. There is a nonempty X C A such that

| X + hB| < " X]|.

Remark. In [P2011b] Petridis proves a stronger version of this theorem eliminating

the need for the Plinmnecke inequalities in this proof.

Lemma. Let A, By, ... B,_1 be sets in a commutative group M and define «; so that
|A+ B;| = o;|A|. There is a nonempty X C A such that

X + Bo+ -+ Bya| < | X[ (HO”)

ich
Corollary. Let A, By, ...By_1 be sets in a commutative group M and define o; so
that |A + B;| = a;|A|. There is a nonempty X C A such that
X +By+ -+ Bp| < apay - ap | X

Definition (Layered Graph). A directed graph G = G(V, E) is a graph with layers
{Vitient1 CV if V.= Uens1V; is a disjoint union and for every edge (v,v') € E there
exists an i such that 0 < i < h,v € V; and v' € Vi,;.

Definition (Addition Graph). Let A and B be subsets of a group. Define
Vi =(A+iB) x {i}
and
B = {((v,z’),(v+b,z’+ 1)) "U €A+iBbe B}.
Let G = G(V, E) be a graph with
V=|J Vi and E=|]JE.

i€h+1 ich
1



2 DAKOTA BLAIR

Then G, (A, B) = G 1is the h-layer addition graph of A and B.

Let G be an addition graph. The Plinnecke condition is exactly the structure of
this graph that is induced by the commutativity of addition.

Definition (Pliinnecke Condition). Let G = G(V, E) be a layered graph with layers
{Vi}tien. Further let j and k be such that 0 < j < h and k > 2. Let vertices
we V,veV;and {w,;}icr satisfy E(u,v) and E(v,w;) for alli € k. If this is the case
then there exists k distinct verticies {v;}iex C V; such that E(u,v;) and (v;,w;) for
all i € k.

Definition (Path). Let G = G(V, E) be a graph. A path of length | is a sequence
of vertices (v;)ic1—1 € V! such that E(v;,vi11) for 0 < i < 1. Let P(G) be the set of
paths in a graph of length I, and P(G) be the union over all | € N. Further, given a
path s = (v;)ie1—1 € P(G) let the ith node in the path s be denoted by n;(s) = v;.

Definition (Image, Inverse Image). Let G = G(V, E) be a graph. The lth image of image, Tm'(X)
X is
Im'(X) = {v € V‘ there ezists s € Pi(G) such that no(s) € X and ni_1(s) = v} :

Further, let Im°(X) = X, Im(X) = Im"(X). Similarly define the lth inverse image of
X as

Im_l(X) = {v € V‘ there exists s € Pi(G) such that no(s) = v and n;_1(s) € X} )
It is now possible to define the magnification ratio.

Definition (Magnification Ratio). Let G be a finite layered graph with layers {V; }icpi1. magnification
The ith magnification ratio of G is ratio,

i Di(G), Dp, p
[ Im*(Z)|

Di(G) = min { Z

‘ 7+ 3,7 C A} .
If G is the primary graph under consideration then let Dy, = Dy(G) and p = Dfll/h.

Definition (Reverse Graph). Let G = G(V, E) be a directed graph. The reverse
graph GT = GT(V,ET) is a graph such that E*(y,z) if and only if E(x,y). The
reverse graph is also referred to as the transpose, as the adjacency matriz of G is the

transpose of the adjacency matriz of GT.

Definition (Commutative Graph). A graph G is commutative, that is, a Plinnecke

graph, if G satisfies the Plinnecke condition and GT satisfies the Plinnecke condition.

Remark. Therefore if G is commutative then GT is as well since (GT)T = G satisfies

the Plinnecke condition.

And now, the statement of the Pliinnecke inequalities.
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Theorem ([P2011a] Theorem 1.1). Let G be a finite commutative graph. p* < Di(Q)
foralli e h+1.

Definition (Vertex Degrees). Let G = G(V, E) be a graph. The incoming degree of

a vertexv € V is
dg(v) = [{w € V|E(v,w)}].
Similarly the outgoing degree of v is
d&(v) = [{w € V|E(w,v)}].
Usually the subscript will be dropped when evaluating the degree of a vertex in the

primary graph under consideration.

Lemma ([N] Lemma 7.1). Let G = G(V,E) be a commutative graph with layers
{Vi}ien such that E(u,v). In this case

dt(u) >d"(v) and d (u) <d (v).
Remark. Note that if X and Y are sets of vertices in a graph then
Im(X)UIm(Y) =Im(X UY).

Definition (Zone of Flow). Let G = G(V, E) be a graph. For U C V define the zone
with inflow n of U as
Z,(U)={ueU|d (u) =n}

and similarly define the zone with outflow n of U

ZFU)={ueU|d*(u) =n}.

n

Lemma ([P2011a] Remark). Let G = G(V, E) be a graph with layers {V;}ien. Let
i € h and k = sup {d_(v)‘v € Vi}. If k is finite and for all i < k

Xi=27 (Vi) and T,=Im(X;)\ ( U Tj> then

i<j<k
(1) U mx)= U 7
i<j<k i<j<k
Lemma (PL3.5a). Let C € R, H a finite commutative graph with layers {U;}iea. If
S c U = C|S| <|Im(S)| for all S CV then

|E(Us, Uh)] < CTHE(UL, Ua).

Corollary (PL3.7). Let C € R, H a finite commutative graph with layers {U;}ico
such that

ScU, = OS] <|Im(S)| and |EUy,Up)| =C HEUL,Us)l.

the Plimnecke

inequalities
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Further let k = max{d*(v)}v € Ul}. If1<i<k X,=2(Uy) and Y; = Z; (Us)
then

C|X;| =Y:| and hence C|U;y| = |Us|.
Lemma (PL3.5b). Let Cy € R, H a finite commutative graph with layers {W;}ico
such that

S C W= CylS| <|Im(S)| and S cC W= Cz'|S| < |Im(S)]
Then
|E(Uo, Uh)| = C7HE(Uy, U)].
Lemma (PL3.5¢c). Let C € R, H a finite commutative graph with layers {W,;};co
Assume H is such that for all S C W,
CIS| < [tn(S)| and €8] < [1m(S)]
Let k =max {d~(v)|v € Wi}. If 1 <i <k, X; = Z7 (W;) and Y; = Z; (W>) then
C|1Xi| =|Y;| and hence C|Wi|=|W,|.

Corollary. Let Cy € R, H a finite commutative graph with layers {U;}ica. Assume
H s such that for all S C Uy

CulS| < |Im(S)] and C3YS| < [Im™'(S)].

Then
Cul|Us| = |Uy|.

Lemma ([P2011a] Lemma 3.6). Let C' € R such that C > 1, H a finite weighted
commutative graph with layers {U;}ica and w(v) = C™ for allv € U;. If Uy is a

separating set of minimum weight then Uy is a separating set of minimum weight.

Lemma ([P2011a] Lemma 3.3). Let C' € R, G a finite commutative graph with layers
{Vitien and w(v) = C~% for all v € V;. There exists a separating set of minimum

weight contained in Vo U V.

Corollary ([P2011a] Corollary 3.4). Let G be a finite commutative graph with layers
{Vitien and w(v) = pu=" = Du(G)™" for allv € V;. Let S be a separating set of
minimum weight. Then the weight of S is w(S) = |Vp|.

Lemma (Direct Product Lemmma). If A, B,C, D are nonempty subsets of a group,
|A+ B| = a|A|, and |C + D| = 5|C| then |A x C + B x D| = af|A x C|.

Definition (Layered Graph Product, [R] Definition 4.1). Let G' = G(V', E'), G" =
G(V",E"), be graphs with layers {V}icns1 C V' and {V!"}ienn C V7 respectively.
The layered product of G' and G" is G = G(V, E) = G'G" where V; = V! x V" form
the layers of G and for (u',u”), (v',v") € V- x V" let E((v/,u"), (v',v")) be true if and
only if E'(u/',v") and E(u”,v").
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Remark. The layered graph product is a proper subgraph of the usual product graph.

Lemma ([R] Lemma 4.2). The layered graph product of commutative graphs is com-

mutative.

Lemma (Multiplicativity of Magnification Ratios, [R] Lemma 4.3). If G = G(V, E), G’ =
G\V',E") and G" = (V",E") are graphs with layers {V;}ichs1 CV, {V/'}ient1 C V’
and {V/" }Vieny1 C V" respectively and G = G'G" then D;(G) = D;(G")D;(G") for all

v € h.
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