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Conjecture (Erdős-Szemerédi). For all ε > 0 and finite nonempty A ⊂ R there

exists a Cε > 0 such that

Cε|A|2−ε ≤ max{|A+ A|, |A · A|}

Theorem. Let X,A1, A2, . . . An be finite nonempty subsets of a commutative group.

Then

|X|n−1|A1 + A2 + · · ·+ An| ≤ |A1 +X||A2 +X| · · · |An +X|.

Theorem ([R] Theorem 2.3, j = 1). Let h be an integer, A,B finite sets in a com-

mutative group and |A+B| = α|A|. There is a nonempty X ⊂ A such that

|X + hB| ≤ αh|X|.

Remark. In [P2011b] Petridis proves a stronger version of this theorem eliminating

the need for the Plünnecke inequalities in this proof.

Lemma. Let A,B0, . . . Bh−1 be sets in a commutative group M and define αi so that

|A+Bi| = αi|A|. There is a nonempty X ⊂ A such that

|X +B0 + · · ·+Bh−1| ≤ |X|hh
(∏
i∈h

αi

)
Corollary. Let A,B0, . . . Bh−1 be sets in a commutative group M and define αi so

that |A+Bi| = αi|A|. There is a nonempty X ⊂ A such that

|X +B0 + · · ·+Bh−1| ≤ α0α1 · · ·αh−1|X|.

Definition (Layered Graph). A directed graph G = G(V,E) is a graph with layers

{Vi}i∈h+1 ⊂ V if V = ∪i∈h+1Vi is a disjoint union and for every edge (v, v′) ∈ E there

exists an i such that 0 ≤ i < h, v ∈ Vi and v′ ∈ Vi+1.

Definition (Addition Graph). Let A and B be subsets of a group. Defineaddition graph,

G+(A,B)
Vi = (A+ iB)× {i}

and

Ei =
{(

(v, i), (v + b, i+ 1)
) ∣∣∣v ∈ A+ iB, b ∈ B

}
.

Let G = G(V,E) be a graph with

V =
⋃
i∈h+1

Vi and E =
⋃
i∈h

Ei.
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Then G+(A,B) = G is the h-layer addition graph of A and B.

Let G be an addition graph. The Plünnecke condition is exactly the structure of

this graph that is induced by the commutativity of addition.

Definition (Plünnecke Condition). Let G = G(V,E) be a layered graph with layers

{Vi}i∈h. Further let j and k be such that 0 < j < h and k ≥ 2. Let vertices

u ∈ V, v ∈ Vj and {wi}i∈k satisfy E(u, v) and E(v, wi) for all i ∈ k. If this is the case

then there exists k distinct verticies {vi}i∈k ⊂ Vj such that E(u, vi) and (vi, wi) for

all i ∈ k.

Definition (Path). Let G = G(V,E) be a graph. A path of length l is a sequence

of vertices (vi)i∈l−1 ∈ V l such that E(vi, vi+1) for 0 ≤ i < l. Let Pl(G) be the set of

paths in a graph of length l, and P (G) be the union over all l ∈ N. Further, given a

path s = (vi)i∈l−1 ∈ Pl(G) let the ith node in the path s be denoted by ni(s) = vi.

Definition (Image, Inverse Image). Let G = G(V,E) be a graph. The lth image of image, Iml(X)

X is

Iml(X) =
{
v ∈ V

∣∣∣ there exists s ∈ Pl(G) such that n0(s) ∈ X and nl−1(s) = v
}
.

Further, let Im0(X) = X, Im(X) = Im1(X). Similarly define the lth inverse image of

X as

Im−l(X) =
{
v ∈ V

∣∣∣ there exists s ∈ Pl(G) such that n0(s) = v and nl−1(s) ∈ X
}
.

It is now possible to define the magnification ratio.

Definition (Magnification Ratio). Let G be a finite layered graph with layers {Vi}i∈h+1. magnification

ratio,

Di(G), Dh, µ

The ith magnification ratio of G is

Di(G) = min

{
| Imi(Z)|
|Z|

∣∣∣∣Z 6= ∅, Z ⊂ A

}
.

If G is the primary graph under consideration then let Dh = Dh(G) and µ = D
1/h
h .

Definition (Reverse Graph). Let G = G(V,E) be a directed graph. The reverse

graph GT = GT (V,ET ) is a graph such that ET (y, x) if and only if E(x, y). The

reverse graph is also referred to as the transpose, as the adjacency matrix of G is the

transpose of the adjacency matrix of GT .

Definition (Commutative Graph). A graph G is commutative, that is, a Plünnecke

graph, if G satisfies the Plünnecke condition and GT satisfies the Plünnecke condition.

Remark. Therefore if G is commutative then GT is as well since (GT )T = G satisfies

the Plünnecke condition.

And now, the statement of the Plünnecke inequalities.
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Theorem ([P2011a] Theorem 1.1). Let G be a finite commutative graph. µi ≤ Di(G) the Plünnecke

inequalitiesfor all i ∈ h+ 1.

Definition (Vertex Degrees). Let G = G(V,E) be a graph. The incoming degree ofincoming degree,

outgoing degree,

d−G(v), d
+
G(v)

a vertex v ∈ V is

d−G(v) =
∣∣{w ∈ V ∣∣E(v, w)

}∣∣ .
Similarly the outgoing degree of v is

d+G(v) =
∣∣{w ∈ V ∣∣E(w, v)

}∣∣ .
Usually the subscript will be dropped when evaluating the degree of a vertex in the

primary graph under consideration.

Lemma ([N] Lemma 7.1). Let G = G(V,E) be a commutative graph with layers

{Vi}i∈h such that E(u, v). In this case

d+(u) ≥ d+(v) and d−(u) ≤ d−(v).

Remark. Note that if X and Y are sets of vertices in a graph then

Im(X) ∪ Im(Y ) = Im(X ∪ Y ).

Definition (Zone of Flow). Let G = G(V,E) be a graph. For U ⊂ V define the zoneZone,

Z−
n (V ), Z+

n (V ) with inflow n of U as

Z−n (U) =
{
u ∈ U

∣∣d−(u) = n
}

and similarly define the zone with outflow n of U

Z+
n (U) =

{
u ∈ U

∣∣d+(u) = n
}
.

Lemma ([P2011a] Remark). Let G = G(V,E) be a graph with layers {Vi}i∈h. Let

i′ ∈ h and k = sup
{
d−(v)

∣∣v ∈ Vi′}. If k is finite and for all i ≤ k

Xi = Z−i (Vi′) and Ti = Im(Xi) \

( ⋃
i<j≤k

Tj

)
then

(1)
⋃

i<j≤k

Im(Xj) =
⋃

i<j≤k

Tj.

Lemma (PL3.5a). Let C ∈ R, H a finite commutative graph with layers {Ui}i∈2. If

S ⊂ U1 ⇒ C|S| ≤ | Im(S)| for all S ⊂ V then

|E(U0, U1)| ≤ C−1|E(U1, U2)|.

Corollary (PL3.7). Let C ∈ R, H a finite commutative graph with layers {Ui}i∈2
such that

S ⊂ U1 ⇒ C|S| ≤ | Im(S)| and |E(U0, U1)| = C−1|E(U1, U2)|.
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Further let k = max
{
d−(v)

∣∣v ∈ U1

}
. If 1 ≤ i ≤ k, Xi = Z−i (U1) and Yi = Z−i (U2)

then

C|Xi| = |Yi| and hence C|U1| = |U2|.

Lemma (PL3.5b). Let CH ∈ R, H a finite commutative graph with layers {Wi}i∈2
such that

S ⊂ W1 ⇒ CH |S| ≤ | Im(S)| and S ⊂ W1 ⇒ C−1H |S| ≤ | Im
−1(S)|

Then

|E(U0, U1)| = C−1|E(U1, U2)|.

Lemma (PL3.5c). Let C ∈ R, H a finite commutative graph with layers {Wi}i∈2
Assume H is such that for all S ⊂ W1

C|S| ≤ | Im(S)| and C−1|S| ≤ | Im−1(S)|.

Let k = max
{
d−(v)

∣∣v ∈ W1

}
. If 1 ≤ i ≤ k, Xi = Z−i (W1) and Yi = Z−i (W2) then

C|Xi| = |Yi| and hence C|W1| = |W2|.

Corollary. Let CH ∈ R, H a finite commutative graph with layers {Ui}i∈2. Assume

H is such that for all S ⊂ U1

CH |S| ≤ | Im(S)| and C−1H |S| ≤ | Im
−1(S)|.

Then

CH |U0| = |U1|.

Lemma ([P2011a] Lemma 3.6). Let C ∈ R such that C > 1, H a finite weighted

commutative graph with layers {Ui}i∈2 and w(v) = C−i for all v ∈ Ui. If U1 is a

separating set of minimum weight then U0 is a separating set of minimum weight.

Lemma ([P2011a] Lemma 3.3). Let C ∈ R, G a finite commutative graph with layers

{Vi}i∈h and w(v) = C−i for all v ∈ Vi. There exists a separating set of minimum

weight contained in V0 ∪ Vh.

Corollary ([P2011a] Corollary 3.4). Let G be a finite commutative graph with layers

{Vi}i∈h and w(v) = µ−i = Dh(G)−i/h for all v ∈ Vi. Let S be a separating set of

minimum weight. Then the weight of S is w(S) = |V0|.

Lemma (Direct Product Lemmma). If A,B,C,D are nonempty subsets of a group,

|A+B| = α|A|, and |C +D| = β|C| then |A× C +B ×D| = αβ|A× C|.

Definition (Layered Graph Product, [R] Definition 4.1). Let G′ = G(V ′, E ′), G′′ =

G(V ′′, E ′′), be graphs with layers {V ′i }i∈h+1 ⊂ V ′ and {V ′′i }i∈h+1 ⊂ V ′′ respectively.

The layered product of G′ and G′′ is G = G(V,E) = G′G′′ where Vi = V ′i × V ′′i form

the layers of G and for (u′, u′′), (v′, v′′) ∈ V ×V ′′ let E((u′, u′′), (v′, v′′)) be true if and

only if E ′(u′, v′) and E(u′′, v′′).
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Remark. The layered graph product is a proper subgraph of the usual product graph.

Lemma ([R] Lemma 4.2). The layered graph product of commutative graphs is com-

mutative.

Lemma (Multiplicativity of Magnification Ratios, [R] Lemma 4.3). If G = G(V,E), G′ =

G(V ′, E ′) and G′′ = (V ′′, E ′′) are graphs with layers {Vi}i∈h+1 ⊂ V , {V ′i }i∈h+1 ⊂ V ′

and {V ′′i }i∈h+1 ⊂ V ′′ respectively and G = G′G′′ then Di(G) = Di(G
′)Di(G

′′) for all

i ∈ h.
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