AN ESTIMATE ON SUM SETS

DAKOTA BLAIR

Theorem. Let X, Ay, Ay, ... A, be finite nonempty subsets of a commutative group.
Then
| X" A+ Ay + -+ A < AL+ X|Ap 4+ X A, + X

Definition (Layered Graph). A directed graph G = G(V, E) is a graph with layers
{Vitient1 CV if V.= Uens1V; is a disjoint union and for every edge (v,v') € E there
exists an i such that 0 < i < h,v € V; and v € Vi 4.

magnification Definition (Magnification Ratio). Let G be a finite layered graph with layers {V;}ichi1-

ratio,  The ith magnification ratio of G is

Di(G), Dy, pa {Hﬂwﬂ

Di(G) = min w|‘z¢chA}

If G is the primary graph under consideration then let Dy = Dy(G) and p = Dfll/h.

the Pliinnecke Theorem ([P2011a] Theorem 1.1). Let G be a finite commutative graph and define
inequalities 1, = (D, (G))Y". Then u' < Dy(G) for all i € h+ 1.

Definition (Addition Graph). Let A and B be finite subsets of a group. Define
Vi=(A+1iB) x {i}

and
E; = {((v,0),(v+bi+1)|lve A+iB,be B}.
Let G = (V, E) be a graph with

h h—1
V:U%¢WiE:U&.
=0 =0

Then Gy n(A, B) = G is the addition graph of A and B with layers {V}iept1-

Lemma (Direct Product Lemmma). If A, B,C, D are nonempty subsets of a group,
|A+ B| = alA|, and |C + D| = 5|C| then |A x C 4+ B x D| = af|A x C|.
Proof. Note that (z,y) € A x C'+ B x D if and only if there exists a € A,b € B,c €
C,d € D such that vt =a+ b and y = ¢+ d. Thus

|Ax C+ B x D|=|A+ B||C + D| = ap|A||C|

|Ax C+ B x D|=af|AxC|.
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Definition (Layered Graph Product, [R] Definition 4.1). Let G' = G(V', E’), G" =
G(V",E"), be graphs with layers {V!}icnt1 C V' and {V!"}ienn C V7 respectively.
The layered product of G' and G" is G = G(V, E) = G'G" where V; = V! x V" form
the layers of G and for (u/,u”), (v',v") € V- x V" let E((v/,u"), (v',v")) be true if and
only if E'(u/,v") and E(u”,v").

Remark. Note that the layered graph product is a proper subgraph of the usual product
graph.

Lemma ([R] Lemma 4.2). The layered graph product of commutative graphs is com-

mutative.

Proof. Using the notation in the definition of the layered graph product, assume G’
and G” are commutative. If E(u,v) and E(v,w;) for u,v,w; € V and i € k then
mo(u) € V' mo(v) € V' mo(w;) € V' for i € k, E(mo(u), mo(v)) and E(my(v), mo(w;))
for each i € k. By the commutativity of G’ there exist k distinct vertices {v.};er C
V'’ such that E(mo(u),v!) and E(v}, mo(w;)) for each i € k. Similarly there exist k
distinct vertices {v! };er C V" satisfying the same property in the second coordinate.
Therefore there exist k distinct vertices {v; = (v}, v)) }iex C V such that E(u,v;) and

E(v;, w;) for all i € k. Consequently G is commutative. O

Lemma (Multiplicativity of Magnification Ratios, [R] Lemma4.3). IfG = G(V, E),G' =
G(V',E") and G" = (V",E") are graphs with layers {V;}icha1 CV, {V/ Viens1 C V'
and {V!" }ient1 C V" respectively and G = G'G" then D;(G) = D;(G")D;(G") for all
i € h.
Proof. Note that D;(G) < D;(G")D;(G") since choosing sets Z' C V{ and Z" C V{/
which achieve the minimum magnification in G’ and G” respectively yields Z = Z' x Z" C 'V
demonstrating the upper bound.

To see that D;(G")D;(G") < D;(G), consider the graph G” = G, (W, {e}) where
W is a finite set and e is the identity of the group under consideration, and note that
" = Di(G") =1. Now given X C Vp =V x W define

X, = {(a,b) S Vo‘b = w for some w € W}

and p/ = D1(G"). These sets form a partition of X, in particular,
xX=Jx,
weW
and consequently
[Im(X)| = > [Tm(Xy)[ > > /[ Xo| = #/|X]
weWw weW

which gives the upper bound in the case pu” = 1.
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For the general case, construct a graph H = G(Vy, Ey) from the layers
Uy = Vi x Vi = Vo, Uy = V] x Vi Uy = V] x V] =V

Let ug = (2/,2") € Uy, uy = (v, 2") € Uy and Ey(ug, uy) if and only if there is a path
in G’ from 2’ to y/. Similarly let uy = (¢/,2") € Uy,us = (¢, y") and Eg(uy,ug) if
and only if there is a path in G” from z” to y”. Note there is a path from ug to us in

H if and only if there is a path from ug to us in GG, hence
Dy(H) = D;(G).

Then the induced subgraphs Hy, Hy on UyUU; and U; UU, respectively are examples

of the case treated before, so
Dy(Hy) > D;j(G") and D;(Hy) > D;(G")
and finally
D;j(G) = Do(H) = D1(H1)D2(Hz) = D;(G')D;(G").
Consequently,
D;(G) = D;(G")D;(G").
O

Corollary ([R] Theorem 2.3, j = 1). Let h be an integer, A, B finite sets in a
commutative group and |A + B| = a|A|. There is a nonempty X C A such that

| X + hB| < " X].

Proof. Let G = G4 (A, B). By the definition of magnification ratio

Di@ =min {2 7 4 5,7 c a) AL _ A2 B,

Then by the Plinnecke inequality |
= (Du(G))" < Di(G).
But then
p" = min {HH;;%’X #3, X C A} < ah,
therefore there exists a nonempty X C A such that
X + hB| < |X|a"
O

Remark. In [P2011b] Petridis proves a stronger version of this theorem eliminating

the need for the Pliinnecke inequalities in this proof.
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Lemma. Let A, By, ... B,_1 be sets in a commutative group M and define «; so that
|A+ B;| = a;|A|. There is a nonempty X C A such that

|X+Bo++Bh_1| Shh (HO.@) |X|

ich
Proof. Since the «; are rational let n be their least common denominator and define
n; =n/a;. Let N = M x Z". Consider elements in this group (h + 1)-tuples and let
7; be the value of ith entry. Then define e; € N so that 7,(e;) = §;; where 9, ; = 1 if
i = j and 0 otherwise. Let C' = A+ By+---+ By_1 and T; = {(j + 1)€i+1}jen; SO
that |7;| = n;. Then note that each sum of the form

c+to+-- -+t wherece Ct; €T

is distinct for a given assignment of values (c, to, ... ,th—1) € C X [[,c, T;- Now define
B = Ujen(B; + T;) and note that A+ B, +T,N A+ B; +T; = @. Then

A+ Bl =) |A+ B+ T,| <> _|A+ Bil|Ti| = |A] ) nia; = hnA.

i€h i€h i€h

Therefore from the previous corollary | there exists a nonempty X C A such that
| X + hB| < h'"n"|X]
Further X + By+ -+ Bp_1+ Ty + - Tp_1 C | X + hB| and hence

X + By+ -+ Bya| [ [ < |X + 1B

ich

which results in the inequality

-1
|X + By + -+ Bp_1| < |X|h"n" (H n) .

ich

o (00) (11

therefore the above inequality becomes

| X +By+ -+ By_q| < |X|A" (Ha> (Hn) <Hni>_l — |X|hh (Ha)

i€h ich ich ich

But

consequently

X + Byt + Buoa| < | X" (HO")'

ich
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Corollary. Let A, By, ... B,_1 be sets in a commutative group M and define «; so
that |A + B;| = «;|A|. There is a nonempty X C A such that

i€h

Proof. Let k be a positive integer. By the direct product lemma|if |A + B;| = o] A|
then |A* 4+ BF| = af|A*|. Now define

C = A+By+--+By,, C = A4+BfF+...BF |
G = Gi1(4,0), G = Gi.(AF ),
po= Di(G) po= Di(G)

Then by the previous lemma

< hhHai and 4 < hhHai.

ich ich

Now note that G’ is isomorphic to G¥, the kth layered product of G. Given an edge
(u,v) of G’ by definition there exists u € A¥ v € A¥ + €’ and an element w € C’
such that v + w = v. Further w is unique because group inverses are unique. This
edge exists if and only if m;(u) € A, m(w) € C and m;(v) € A+ C for all i € k.
Therefore (m;(u), m;(v)) is an edge in G for all i € k, and in G* there is exactly one
edge corresponding to (u,w). This shows G’ and G* are isomorphic since the edge

given was arbitrary. Thus by the multiplicativity of magnification ratios I ' = pF and

u< h%Hai.

ich

Since k is arbitrary p < [],, o; must hold, hence there exists a nonempty X C A
such that

X +By+---+Bj4| < (Ha> X

ich
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Theorem. Let X, Ay, Ay, ... A, be finite nonempty subsets of a commutative group.
Then
| X["HAL + Ay + -+ Ay < AL+ X|Ap 4+ X - A, + X

Proof. By the previous corollary there exists an X’ C X such that

X'+ A+ A, < \X’\H% = XX [ 1X + Adl
i=1 =1
But note that | X'| < |X]and [A; +---A4,| <|X '+ A1 +---A,] so
A+ Ap| <X+ At A < XX TTIX + Al < IX]TIX + Al
=1 =1

Therefore
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