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Theorem. Let X,A1, A2, . . . An be finite nonempty subsets of a commutative group.

Then

|X|n−1|A1 + A2 + · · ·+ An| ≤ |A1 +X||A2 +X| · · · |An +X|.

Definition (Layered Graph). A directed graph G = G(V,E) is a graph with layers

{Vi}i∈h+1 ⊂ V if V = ∪i∈h+1Vi is a disjoint union and for every edge (v, v′) ∈ E there

exists an i such that 0 ≤ i < h, v ∈ Vi and v′ ∈ Vi+1.

Definition (Magnification Ratio). Let G be a finite layered graph with layers {Vi}i∈h+1.magnification

ratio,

Di(G), Dh, µ

The ith magnification ratio of G is

Di(G) = min

{
| Imi(Z)|
|Z|

∣∣∣∣Z 6= ∅, Z ⊂ A

}
.

If G is the primary graph under consideration then let Dh = Dh(G) and µ = D
1/h
h .

Theorem ([P2011a] Theorem 1.1). Let G be a finite commutative graph and definethe Plünnecke

inequalities µ = (Dh(G))1/h. Then µi ≤ Di(G) for all i ∈ h+ 1.

Definition (Addition Graph). Let A and B be finite subsets of a group. Define

Vi = (A+ iB)× {i}

and

Ei =
{

((v, i), (v + b, i+ 1))
∣∣v ∈ A+ iB, b ∈ B

}
.

Let G = (V,E) be a graph with

V =
h⋃

i=0

Vi and E =
h−1⋃
i=0

Ei.

Then G+,h(A,B) = G is the addition graph of A and B with layers {Vi}i∈h+1.

Lemma (Direct Product Lemmma). If A,B,C,D are nonempty subsets of a group,

|A+B| = α|A|, and |C +D| = β|C| then |A× C +B ×D| = αβ|A× C|.

Proof. Note that (x, y) ∈ A×C +B ×D if and only if there exists a ∈ A, b ∈ B, c ∈
C, d ∈ D such that x = a+ b and y = c+ d. Thus

|A× C +B ×D| = |A+B||C +D| = αβ|A||C|

|A× C +B ×D| = αβ|A× C|.
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Definition (Layered Graph Product, [R] Definition 4.1). Let G′ = G(V ′, E ′), G′′ =

G(V ′′, E ′′), be graphs with layers {V ′i }i∈h+1 ⊂ V ′ and {V ′′i }i∈h+1 ⊂ V ′′ respectively.

The layered product of G′ and G′′ is G = G(V,E) = G′G′′ where Vi = V ′i × V ′′i form

the layers of G and for (u′, u′′), (v′, v′′) ∈ V ×V ′′ let E((u′, u′′), (v′, v′′)) be true if and

only if E ′(u′, v′) and E(u′′, v′′).

Remark. Note that the layered graph product is a proper subgraph of the usual product

graph.

Lemma ([R] Lemma 4.2). The layered graph product of commutative graphs is com-

mutative.

Proof. Using the notation in the definition of the layered graph product, assume G′

and G′′ are commutative. If E(u, v) and E(v, wi) for u, v, wi ∈ V and i ∈ k then

π0(u) ∈ V ′, π0(v) ∈ V ′, π0(wi) ∈ V ′ for i ∈ k, E(π0(u), π0(v)) and E(π0(v), π0(wi))

for each i ∈ k. By the commutativity of G′ there exist k distinct vertices {v′i}i∈k ⊂
V ′ such that E(π0(u), v′i) and E(v′i, π0(wi)) for each i ∈ k. Similarly there exist k

distinct vertices {v′′i }i∈k ⊂ V ′′ satisfying the same property in the second coordinate.

Therefore there exist k distinct vertices {vi = (v′i, v
′′
i )}i∈k ⊂ V such that E(u, vi) and

E(vi, wi) for all i ∈ k. Consequently G is commutative. �

Lemma (Multiplicativity of Magnification Ratios, [R] Lemma 4.3). If G = G(V,E), G′ =

G(V ′, E ′) and G′′ = (V ′′, E ′′) are graphs with layers {Vi}i∈h+1 ⊂ V , {V ′i }i∈h+1 ⊂ V ′

and {V ′′i }i∈h+1 ⊂ V ′′ respectively and G = G′G′′ then Di(G) = Di(G
′)Di(G

′′) for all

i ∈ h.

Proof. Note that Di(G) ≤ Di(G
′)Di(G

′′) since choosing sets Z ′ ⊂ V ′0 and Z ′′ ⊂ V ′′0
which achieve the minimum magnification inG′ andG′′ respectively yields Z = Z ′ × Z ′′ ⊂ V0

demonstrating the upper bound.

To see that Di(G
′)Di(G

′′) ≤ Di(G), consider the graph G′′ = G+,1(W, {e}) where

W is a finite set and e is the identity of the group under consideration, and note that

µ′′ = D1(G
′′) = 1. Now given X ⊂ V0 = V ′0 ×W define

Xw =
{

(a, b) ∈ V0
∣∣b = w for some w ∈ W

}
and µ′ = D1(G

′). These sets form a partition of X, in particular,

X =
⋃
w∈W

Xw

and consequently

| Im(X)| =
∑
w∈W

| Im(Xw)| ≥
∑
w∈W

µ′|Xw| = µ′|X|

which gives the upper bound in the case µ′′ = 1.
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For the general case, construct a graph H = G(VH , EH) from the layers

U0 = V ′0 × V ′′0 = V0, U1 = V ′j × V ′′0 , U2 = V ′j × V ′′j = Vj.

Let u0 = (x′, x′′) ∈ U0, u1 = (y′, x′′) ∈ U1 and EH(u0, u1) if and only if there is a path

in G′ from x′ to y′. Similarly let u1 = (y′, x′′) ∈ U1, u2 = (y′, y′′) and EH(u1, u2) if

and only if there is a path in G′′ from x′′ to y′′. Note there is a path from u0 to u2 in

H if and only if there is a path from u0 to u2 in G, hence

D2(H) = Dj(G).

Then the induced subgraphs H1, H2 on U0∪U1 and U1∪U2 respectively are examples

of the case treated before, so

D1(H1) ≥ Dj(G
′) and D1(H2) ≥ Dj(G

′′)

and finally

Dj(G) = D2(H) ≥ D1(H1)D2(H2) ≥ Dj(G
′)Dj(G

′′).

Consequently,

Dj(G) = Dj(G
′)Dj(G

′′).

�

Corollary ([R] Theorem 2.3, j = 1). Let h be an integer, A,B finite sets in a

commutative group and |A+B| = α|A|. There is a nonempty X ⊂ A such that

|X + hB| ≤ αh|X|.

Proof. Let G = G+,h(A,B). By the definition of magnification ratio

D1(G) = min

{
| Im(Z)|
|Z|

∣∣∣∣Z 6= ∅, Z ⊂ A

}
≤ | Im(A)|

|A|
=
|A+B|
|A|

= α.

Then by the Plünnecke inequality

µ = (Dh(G))
1
h ≤ D1(G).

But then

µh = min

{
| Imh(X)|
|X|

∣∣∣∣X 6= ∅, X ⊂ A

}
≤ αh,

therefore there exists a nonempty X ⊂ A such that

|X + hB| ≤ |X|αh.

�

Remark. In [P2011b] Petridis proves a stronger version of this theorem eliminating

the need for the Plünnecke inequalities in this proof.
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Lemma. Let A,B0, . . . Bh−1 be sets in a commutative group M and define αi so that

|A+Bi| = αi|A|. There is a nonempty X ⊂ A such that

|X +B0 + · · ·+Bh−1| ≤ hh

(∏
i∈h

αi

)
|X|

Proof. Since the αi are rational let n be their least common denominator and define

ni = n/αi. Let N = M × Zh. Consider elements in this group (h+ 1)-tuples and let

πi be the value of ith entry. Then define ei ∈ N so that πj(ei) = δi,j where δi,j = 1 if

i = j and 0 otherwise. Let C = A + B0 + · · · + Bh−1 and Ti = {(j + 1)ei+1}j∈ni
so

that |Ti| = ni. Then note that each sum of the form

c+ t0 + · · ·+ th−1 where c ∈ C, ti ∈ Ti

is distinct for a given assignment of values (c, t0, . . . , th−1) ∈ C ×
∏

i∈h Ti. Now define

B = ∪i∈h(Bi + Ti) and note that A+Bi + Ti ∩ A+Bj + Tj = ∅. Then

|A+B| =
∑
i∈h

|A+Bi + Ti| ≤
∑
i∈h

|A+Bi||Ti| = |A|
∑
i∈h

niαi = hn|A|.

Therefore from the previous corollary there exists a nonempty X ⊂ A such that

|X + hB| ≤ hhnh|X|

Further X +B0 + · · ·+Bh−1 + T0 + · · ·Th−1 ⊂ |X + hB| and hence

|X +B0 + · · ·+Bh−1|
∏
i∈h

ni ≤ |X + hB|

which results in the inequality

|X +B0 + · · ·+Bh−1| ≤ |X|hhnh

(∏
i∈h

ni

)−1
.

But

hhnh = hh

(∏
i∈h

αi

)(∏
i∈h

ni

)
therefore the above inequality becomes

|X +B0 + · · ·+Bh−1| ≤ |X|hh
(∏

i∈h

αi

)(∏
i∈h

ni

)(∏
i∈h

ni

)−1
= |X|hh

(∏
i∈h

αi

)
consequently

|X +B0 + · · ·+Bh−1| ≤ |X|hh
(∏

i∈h

αi

)
.
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Corollary. Let A,B0, . . . Bh−1 be sets in a commutative group M and define αi so

that |A+Bi| = αi|A|. There is a nonempty X ⊂ A such that

|X +B0 + · · ·+Bh−1| ≤

(∏
i∈h

αi

)
|X|.

Proof. Let k be a positive integer. By the direct product lemma if |A+ Bi| = αi|A|
then |Ak +Bk

i | = αk
i |Ak|. Now define

C = A+B0 + · · ·+Bh−1,

G = G+,1(A,C),

µ = D1(G)

C ′ = Ak +Bk
0 + · · ·Bk

h−1,

G′ = G+,1(A
k, C ′),

µ′ = D1(G
′)

Then by the previous lemma

µ ≤ hh
∏
i∈h

αi and µ′ ≤ hh
∏
i∈h

αi.

Now note that G′ is isomorphic to Gk, the kth layered product of G. Given an edge

(u, v) of G′ by definition there exists u ∈ Ak, v ∈ Ak + C ′ and an element w ∈ C ′

such that u + w = v. Further w is unique because group inverses are unique. This

edge exists if and only if πi(u) ∈ A, πi(w) ∈ C and πi(v) ∈ A + C for all i ∈ k.

Therefore (πi(u), πi(v)) is an edge in G for all i ∈ k, and in Gk there is exactly one

edge corresponding to (u,w). This shows G′ and Gk are isomorphic since the edge

given was arbitrary. Thus by the multiplicativity of magnification ratios µ′ = µk and

µ ≤ h
h
k

∏
i∈h

αi.

Since k is arbitrary µ ≤
∏

i∈h αi must hold, hence there exists a nonempty X ⊂ A

such that

|X +B0 + · · ·+Bh−1| ≤

(∏
i∈h

αi

)
|X|.

�



6 DAKOTA BLAIR

Theorem. Let X,A1, A2, . . . An be finite nonempty subsets of a commutative group.

Then

|X|n−1|A1 + A2 + · · ·+ An| ≤ |A1 +X||A2 +X| · · · |An +X|.

Proof. By the previous corollary there exists an X ′ ⊂ X such that

|X ′ + A1 + · · ·An| ≤ |X ′|
n∏

i=1

|X + Ai|
|X|

= |X ′||X|−n
n∏

i=1

|X + Ai|

But note that |X ′| ≤ |X| and |A1 + · · ·An| ≤ |X ′ + A1 + · · ·An| so

|A1 + · · ·An| ≤ |X ′ + A1 + · · ·An| ≤ |X ′||X|−n
n∏

i=1

|X + Ai| ≤ |X|1−n
n∏

i=1

|X + Ai|.

Therefore

|X|n−1|A1 + A2 + · · ·+ An| ≤ |A1 +X||A2 +X| · · · |An +X|.

�
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