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Abstract

For two sets A and M of positive integers and for a positive integer n, let p(n,A,M) denote

the number of partitions of n with parts in A and multiplicities in M , that is, the number of

representations of n in the form n =
∑

a∈Amaa where ma ∈M ∪{0} for all a, and all numbers ma

but finitely many are 0. It is shown that there are infinite sets A and M so that p(n,A,M) = 1

for every positive integer n. This settles (in a strong form) a problem of Canfield and Wilf. It is

also shown that there is an infinite set M and constants c and n0 so that for A = {k!}k≥1 or for

A = {kk}k≥1, 0 < p(n,A,M) ≤ nc for all n > n0. This answers a question of Ljujić and Nathanson.

1 Introduction

For two sets A and M of positive integers and for a positive integer n, let p(n,A,M) denote the

number of representations of n in the form

n =
∑
a∈A

maa (1)

where ma ∈M ∪ {0} for all a, and all numbers ma but finitely many are 0. We say that the function

p = p(n,A,M) has polynomial growth if there exists an absolute constant c and an integer n0 so that

p(n,A,M) ≤ nc for all n > n0. Canfield and Wilf [2] raised the following question.

Question 1 [Canfield and Wilf [2]]

Do there exist two infinite sets A and M so that p(n,A,M) > 0 for all sufficiently large n and

yet p has polynomial growth ?

Ljujić and Nathanson [4] observed, among other things, that this cannot be the case if the set A has

at least δ log n members in [n] = {1, 2, . . . , n} for all sufficiently large n, where δ > 0 is any positive

constant, and asked the following two more specific questions.
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Question 2 [Ljujić and Nathanson [4]]

Let A = {k!}∞k=1. Does there exist an infinite set M of positive integers so that p(n,A,M) > 0 for

all sufficiently large n, and p has polynomial growth ?

Question 3 [Ljujić and Nathanson [4]]

Let A = {kk}∞k=1. Does there exist an infinite set M of positive integers so that p(n,A,M) > 0 for

all sufficiently large n and p has polynomial growth ?

In this note we prove that the answer to all three questions above is positive.

Our first result is simple, and shows that the answer to the first question is positive in the strongest

possible way: there are infinite sets A and M so that p(n,A,M) = 1 for all n. This is stated in the

following Theorem.

Theorem 1.1 There are two infinite sequences of positive integers A and M so that p(n,A,M) = 1

for every positive integer n.

The proof is by an explicit construction, which is general enough to give examples with sets A that grow

at any desired rate which is faster than exponential. This rate of growth is tight, by the observation

of Ljujić and Nathanson mentioned above.

We also prove the following result, which settles Questions 2 and 3.

Theorem 1.2 Let A be an infinite set of positive integers, and suppose that 1 ∈ A and

|A ∩ [n]| = (1 + o(1))
log n

log log n
,

where the o(1) term tends to 0 as n tends to infinity. Then there exists n0 and an infinite set M of

positive integers so that 0 < p(n,A,M) < n8+o(1) for all n > n0.

The upper estimate n8+o(1) can be improved and we make no attempt to optimize it here. The proof

of this theorem is probabilistic and can be easily modified to provide the existence of such sets M for

many other sparse infinite sets A.

The rest of this note is organized as follows. In Section 2 we present the simple proof of Theorem

1.1. In Section 3 we describe the probabilistic construction of the set M used in the proof of Theorem

1.2. The proof it satisfies the required properties and hence establishes Theorem 1.2 is described in

Section 4. Section 5 contains some concluding remarks.

All logarithms throughout the paper are in base 2, unless otherwise specified.

2 The proof of Theorem 1.1

Proof. Let N ∪ {0} = B ∪ C, B ∩ C = ∅ be a partition of the set of all non-negative integers into

two disjoint infinite sets B and C. Let

D = {
∑
i∈B′

2i : B′ ⊂ B}
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be the set of all sums of powers of two in which each exponent lies in B. Similarly, put

E = {
∑
j∈C′

2j : C ′ ⊂ C}.

This is the set of all sums of powers of two in which each exponent is a member of C. Note that both

D and E contain 0, as the sets B′ and C ′ in their definition may be taken to be empty. Since every

non-negative integer has a unique binary representation, it is clear that each such integer has a unique

representation as a sum of an element of D and an element of E.

Define, now,

A = {2d : d ∈ D},

and

M = {
∑
e∈E′

2e : E′ ⊂ E}.

Clearly both A and M are infinite. We claim that every positive integer has a unique representation

of the form (1) with these A and M , that is, p(n,A,M) = 1 for all n ≥ 1. Indeed, a general expression

of the form
∑

a∈Amaa with ma ∈M for all a satisfies∑
a∈A

maa =
∑
d∈D

∑
e∈E′d

2e+d.

Let n = 2t1 + 2t2 + . . .+ 2tr be the binary representation of n, with 0 ≤ t1 < t2 < . . . < tr. By the fact

that each nonnegative integer has a unique representation as a sum of an element of D and an element

of E, there are, for each 1 ≤ j ≤ r, unique di ∈ D and ei ∈ E so that ti = di + ei. The elements di

are not necessarily distinct. Let D′ = {d1, d2 . . . , dr} be the set of all distinct ones. For each d ∈ D′

define m2d =
∑

i:di=d
2ei and observe that

n =
∑
d∈D

m2d · 2d.

Therefore n has a representation of the form (1). It is not difficult to check that this representation

is unique, that is, the elements d and m2d in the expression above can be reconstructed in the unique

way described above from the binary representation of n. This shows that indeed p(n,A,M) = 1 for

all n, completing the proof of Theorem 1.1. 2

Note that by choosing the set B so that |B ∩ {0, 1, . . . , r}| = r − g(r), where g(r) is an arbitrary

monotone function of r that tends to infinity, and r − g(r) also tends to infinity in a monotone way,

we get that for every integer r ≥ 1:

|A ∩ [22r ]| = |D ∩ [2r]| = |B ∩ {r}|+ 2|B∩{0,1,...,r−1}| = 2r−1−g(r−1) +O(1).

As r = log log n this shows that |A ∩ [n]| is

Θ(
log n

2g(log logn)
) +O(1),

showing that by an appropriate choice of g we can get sets A whose growth function is at least

log n/w(n) for an arbitrary slowly growing function w(n).
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3 The probabilistic construction

The set M defined for the proof of Theorem 1.2 is a union of the form M = ∪a∈AMa. Each set Ma is

a union Ma = ∪i:2i≥aMa,i. Each of the sets Ma,i is a random subset of [2i] obtained by picking each

number in [2i], randomly and independently, to be a member of Ma,i with probability i6

2i
(if this ratio

exceeds 1 then all members of [2i] lie in Ma,i, clearly this happens only for finitely many values of i.)

We claim that M satisfies the required properties with high probability (that is, with probability

that tends to 1 as n0 tends to infinity). This is proved in the next section. The fact that p = p(n,A,M)

has polynomial growth is simple: we show that with high probability the set M is sparse enough to

ensure that the total number of expressions of the form (1) that are at most n does not exceed n8+o(1).

The fact that with high probability p(n,A,M) > 0 for all sufficiently large n is more complicated and

requires some work. It turns out to be convenient to restrict attention to expressions (1) of a special

form that enable us to control their behaviour in an effective manner. We can then apply the Janson

Inequality (c.f., [1], Chapter 8) to derive the required result.

4 The proof of Theorem 1.2

4.1 Polynomial growth

Let A be as in Theorem 1.2, and let M = ∪a∈A ∪i:2i≥a Ma,i be as in the previous section. In this

subsection we show that with high probability the function p(n,A,M) has polynomial growth.

Lemma 4.1 For every ε > 0 there exists an n0 = n0(ε) so that with probability at least 1 − ε, M is

infinite and |M ∩ [n]| < log8 n− 1 for all n > n0.

Proof. It is obvious that M is infinite with probability 1. We proceed to prove the main part of the

lemma.

Let m be a sufficiently large integer. If 2i < m then m cannot lie in Ma,i. If 2i ≥ m, then the

probability that m ∈Ma,i is i6

2i
. Since for large i, (i+1)6

2i+1 < 2
3
i6

2i
it follows that for a ≤ m the probability

Pr[m ∈ Ma = ∪i:2i≥mMa,i] is smaller than 3 log6m
m . Similarly, for a > m, Pr[m ∈ Ma] < 3 log6 a

a .

Summing over all a ∈ A, a > m and using the fact that A is sparse we conclude that Pr[m ∈
∪a>mMa] < 10 log6m

m . Since there are o(logm) members of A that are smaller than m we also get that

(since m is large) Pr[m ∈ ∪a≤mMa] < 0.9 log7m
m . Altogether, the probability that m lies in M = ∪aMa

does not exceed log7m
m .

It follows that the expected value of |M ∩ [n]| is smaller than O(1)+ 1
8 log8

e n < 0.5 log8
2 n (where the

O(1) term is added to account for the small values of m). As this cardinality is a sum of independent

random variables we can apply the Chernoff-Hoeffding Inequality (c.f., e.g., [1], Appendix A) and

conclude that the probability that |M ∩ [n]| is at least log8 n− 1 is at most e−Ω(log8 n). For sufficiently

large n0 the sum
∑

n≥n0
e−Ω(log8 n) < ε, completing the proof of the lemma. 2
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Corollary 4.2 Let A and M be as above. For any ε > 0 there is an n0 = n0(ε) so that with probability

at least 1− ε, M is infinite and
∑

n≤m p(n,A,M) ≤ m8+o(1) for all m > n0.

Proof. Let ε and n0 = n0(ε) be as in Lemma 4.1 and suppose that M satisfies the assertion of the

lemma (this happens with probability at least 1 − ε). Then, the number of representations of the

form (1) of integers n that do not exceed m is at most |(M ∩ [m]) ∪ {0}||A∩[m]|, as all coefficients

ma and all numbers a with a nonzero coefficient must be at most m. This expression is at most

(log8m)(1+o(1)) logm/ log logm = m8+o(1), as needed. 2

4.2 Representing all large integers

In this subsection we prove that with high probability every sufficiently large number n has a rep-

resentation of the form (1) where A and M are as above. To do so, it is convenient to insist on a

representation of a special form, which we proceed to define. Put A′ = {a ∈ A : a ≤ n1/3}. Let

q = |A′|, A′ = {a1, a2, . . . , aq} where 1 = a1 < a2 < . . . < aq. Thus q = (1
3 +o(1)) logn

log logn . Let i1 be the

smallest integer t so that 2t ≥ n. For 2 ≤ j ≤ q, let ij be the smallest integer t so that 2t ≥ n
aj logn .

Therefore, n ≤ 2i1 < 2n and n
aj logn ≤ 2ij < 2n

aj logn for all 2 ≤ j ≤ q. Since aj ≤ n1/3 for all aj ∈ A′, it

follows that ij >
1
2 log n for all admissible j.

We say that n has a special representation as a partition with parts in A and multiplicities in M

(for short: n has a special representation) if there is a representation of the form (1) where mj ∈Maj ,ij

for all 1 ≤ j ≤ q.

Lemma 4.3 For all sufficiently large n, the probability that n does not have a special representation

is at most e−Ω(log5 n). Therefore, for any ε > 0 there is an n0 = n0(ε) such that the probability that

there is a special representation for every integer n > n0 is at least 1− ε.

The assertion of Theorem 1.2 follows from Corollary 4.2 (with ε < 1/2) and Lemma 4.3 (with

ε < 1/2) that supply the existence of an infinite set M satisfying the conclusions of the theorem.

In the proof of Lemma 4.3 we apply the Janson Inequality (c.f. [1], Chapter 8). We first state it

to set the required notation. Let X be a finite set, and let R ⊂ X be a random subset of X obtained

by picking each element r ∈ X to be a member of R, randomly and independently, with probability

pr. Let C = {Ci}i∈I be a collection of subsets of X, let Bi denote the event that Ci ⊂ R, and let i ∼ j
denote the fact that i 6= j and Ci ∩ Cj 6= ∅. Let µ =

∑
i∈I Pr[Bi] =

∑
i∈I

∏
j∈Ci

pj be the expected

number of events Bi that hold, and define ∆ =
∑

i,j∈I,i∼j Pr[Bi∩Bj ] where the sum is computed over

ordered pairs. The inequality we need is the following.

Lemma 4.4 (The Janson Inequality) In the notation above, if ∆ ≤ D with D ≥ µ then the

probability that no event Bi holds is at most e−µ
2/2D.

Note that the above statement is an immediate consequence of the two Janson inequalities described

in [1], Chapter 8. If ∆ < µ than the above statement follows from the first inequality, whereas if

∆ ≥ µ then it follows from the second.
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We can now prove Lemma 4.3.

Proof. We apply the Janson inequality as stated in Lemma 4.4 above. The set X here is a disjoint

union of the sets Xj = [2ij ], 1 ≤ j ≤ q, and each element of Xj is chosen with probability
i6j

2ij
. The

sets in the collection of sets C are all sequences of the form (m1,m2, . . . ,mq) with mj ∈ Xj so that

q∑
j=1

mjaj = n. (2)

Note that there are exactly
∏q
j=2 2ij such sets, as for any choice of mj ∈ Xj , 2 ≤ j ≤ q there is a

unique choice of m1 ∈ X1 so that (2) holds. Therefore, in the notation above

µ =

q∏
j=2

2ij
q∏
j=1

i6j
2ij

=
1

2i1

q∏
j=2

i6j = n1−o(1),

where the last equality follows from the fact that 1
2 log n ≤ ij ≤ log n for all 2 ≤ j ≤ q and the fact

that q = (1
3 + o(1)) logn

log logn .

We proceed with the estimation of the quantity ∆ that appears in the inequality. This is the sum,

over all ordered pairs of sequences m
(1)
j and m

(2)
j with m

(1)
j ,m

(2)
j ∈ Xj , where

∑
m

(1)
j aj =

∑
m

(2)
j aj =

n and for at least one r, m
(1)
r = m

(2)
r , of the probability that both m

(1)
j and m

(2)
j belong to Maj ,ij for

all j.

Write ∆ =
∑q

`=1 ∆`, where ∆` is the sum of these probabilities over all pairs m
(1)
j and m

(2)
j as

above for which ` = min{j : m
(1)
j 6= m

(2)
j }.

Claim 1:

∆1 ≤
1

2i1

q∏
j=1

i6j
∑

∅6=I⊂{2,3,...,q}

i61
2i1

∏
j>1,j 6∈I

i6j .

Indeed, for each choice of the sequence m
(1)
j the contribution to ∆1 arises from sequences m

(2)
j for

which m
(1)
r = m

(2)
r for all r is some nonempty subset I of {2, 3, . . . , q}. There are

∏q
j=2 2ij choices

for the sequence m
(1)
j (as the value of m

(1)
1 is determined by the value of the sum

∑q
j=1m

(1)
j aj). The

probability that each m
(1)
j lies in Maj ,ij is

i6j

2ij
. For each fixed choice of m

(1)
j and for each nonempty

subset I as above, there are
∏
j>1,j 6∈I(2

ij − 1) possibilities to choose the numbers m
(2)
j , j > 1, j 6∈ I,

and the value of m
(2)
1 is determined (and has to differ from m

(1)
j , which is another reason the above is

an upper estimate for ∆1 and not a precise computation). The probability that m
(2)
j ∈ Maj ,ij for all

these values of j is
i61
2i1

∏
j>1,j 6∈I

i6j

2ij
, implying Claim 1.

Plugging the value of µ in Claim 1, we conclude that

∆1 ≤ µ2
∑

∅6=I⊂{2,3,...,q}

∏
j∈I

1

i6j
= µ2([

q∏
j=2

(1 +
1

i6j
)]− 1) ≤ µ2 1

log5 n
. (3)

The final inequality above follows from the fact that ij > 0.5 log n for all j and that q = o(log n).
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Claim 2: For any 2 ≤ ` ≤ q,

∆` ≤
1

2i1

q∏
j=1

i6j ·
i6`
2i`

∑
I⊂{`+1,`+2,...,q}

∏
r∈{`+1,`+2,...,q}−I

i6r .

The proof is similar to that of Claim 1 with a few modifications. For each choice of the sequence

m
(1)
j the contribution to ∆` arises from sequences m

(2)
j for which m

(1)
r = m

(2)
r for all r < `, m

(1)
` 6= m

(2)
` ,

and there is a possibly empty subset I of {` + 1, ` + 2, . . . , q} so that m
(1)
r = m

(2)
r for all r ∈ I (and

for no other r in {` + 1, ` + 2, . . . , q}.) As in the proof of Claim 1 there are
∏q
j=2 2ij choices for

the sequence m
(1)
j , and the probability that each m

(1)
j lies in Maj ,ij is

i6j

2ij
. For each fixed choice of

m
(1)
j and for each subset I as above, there are

∏
r∈{`+1,`+2,...,q}−I(2

ir − 1) possible choices for m
(2)
r ,

r ∈ {` + 1, ` + 2, . . . , q} − I, and the probability that each of those lies in the corresponding Mar,ir

is i6r
2ir

. The product of these two terms is at most
∏
r∈{`+1,`+2,...,q}−I i

6
r . Finally, the value of m

(2)
` is

determined by the values of all other m
(2)
j and by the fact that

∑q
j=1m

(2)
j aj = n. (Note that this value

has to lie in [2i` ], otherwise we do not get any contribution here. This is fine, as we are only upper

bounding ∆`.) Finally, the probability that m
(2)
` ∈ Ma`,i` is

i6`
2i`

. This completes the explanation for

the estimate in Claim 2.

Plugging the value of µ we get, by Claim 2, that for any 2 ≤ ` ≤ q

∆` ≤ µ2 2i1

2i`
1

i61i
6
2 · · · i6`−1

∑
I⊂{`+1,`+2,...,q}

∏
r∈I

1

i6r

≤ µ2 2i1

2i`
1

i61i
6
2 · · · i6`−1

q∏
r=`+1

(1 +
1

i6r
) ≤ 4µ2a` log n(

26

log6 n
)`−1.

In the last inequality we used the fact that

2i1

2i`
≤ 2a` log n and

q∏
r=`+1

(1 +
1

i6r
) < 2.

Since a2 = O(1) we conclude that ∆2 ≤ O( µ2

log5 n
). For any ` ≥ 3 we use the fact that a` < `(1+o(1))` ≤

(log n)` to conclude that ∆` ≤ O( µ2

log(5−o(1))`−7 n
) ≤ O( µ2

log7 n
).

Summing over all values of ` we conclude that ∆ = O( µ2

log5 n
). The assertion of Lemma 4.3 thus

follows from Lemma 4.4. As mentioned after the statement of this lemma, this also completes the

proof of Theorem 1.2. 2

5 Concluding Remarks

• Since the proof of Theorem 1.2 is probabilistic and the probabilistic estimates are strong enough it

follows that for any finite collection of sequences Aj , each satisfying the assumptions of Theorem

1.2, there is a sequence of multiplicities M that is good for each of them, where the number n0

here depends on all sequences Aj .
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• The proof of Theorem 1.2 can be easily modified to work for any sequence A that grows to

infinity at least as fast as kΩ(k) and satisfies gcd(A) = 1.

• Erdős and Turán [3] asked if for any asymptotic basis of order 2 of the positive integers (that

is, a set A of positive integers so that each sufficiently large integer has a representation as a

sum of two elements of A), there must be, for any constant t, integers that have more than t

such representations. Theorem 1.1 shows that a natural analogous statement does not hold for

partition functions with restricted multiplicities.
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