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Congruence properties of the binary partition function

BY R. F. CHURCHHOUSE

Atlas Computer Laboratory, Chilton, Didcot, Berks.

{Received 4 October 1968)

1. Introduction. We denote by b(n) the number of ways of expressing the positive
integer n as the sum of powers of 2 and we call b(n) 'the binary partition function'.
This function has been studied by Euler (l), Tanturri (2-4), Mahler (5), de Bruijn(6) and
Pennington (7). Euler and Tanturri were primarily concerned with deriving formulae
for the precise calculation of b(n), whereas Mahler deduced an asymptotic formula for
log b(n) from his analysis of the functions satisfying a certain class of functional
equations. De Bruijn and Pennington extended Mahler's work and obtained more
precise results.

Some time ago I used the Atlas Computer to generate the coefficients of various
power series including OT

F(z) = £ b{n)xn.
71=0

After studying b(n) I proved that

(1) b(n) = 0(nil°e*n) and (2) b{4ri) = b(n) (mod2fc),

where k is a number which is related to the highest power of 2 which divides n. I was
at this time unaware of the work of any of the authors above but a search through
Dickson ((8), p. 164), revealed the work of Euler and Tanturri and I learned of the later
work from Pennington himself. Reference to these papers showed that whereas (1) has
been proved in a much stronger form the congruence properties (2) appear not to have
been noticed before. I was able to prove (2) with the best possible values of k for
n = 0(2), n = 0(4), n = 0(8), etc., but a general proof of the best possible result for
the case n = 0(2m) seems to be more difficult.

The object of this paper is to prove a few formulae and results relating to b(n) and
to state the unproved conjecture associated with (2) together with some of the evidence
supporting it in the hope that someone may be able to find a proof (or disproof).

2. The binary partition function. Let b(0) = 1 and for n ~& 1 let b(n) denote the
number of ways of expressing n as the sum of powers of 2 (sums which are the same
apart from a permutation of the elements are considered to be identical). Thus

1 + 1 + 1 + 1 + 1 + 2 = 1 + 1

= 1 + 2 + 2 + 2 = 1 + 1 + 1 + 4 = 1 + 2 + 4

and so 6(7) = 6. If for \x\ < 1 we define

F(x)= £ b(n)xn (1)
71 = 0
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then, clearly F(x) = jj (1-a;2*)"1 (2)
fc = 0

and it follows at once from this that F(x) satisfies the functional equation

(l-x)F(x)=F(x*). (3)
From (1) and (3) we deduce

b{2n+l) = b(2n), (4)

b(2n) = b{2n-2)+b(n). (5)

By repeated application of (4) and (5) we find

b(2n) = S b(k). (6)
fc=O

This is a special case of a class of formulae which enable us to express b(2mn) as a sum
involving the numbers b(n), b(n— 1),..., 6(0).

THEOREM 1. For any integer m > lit is possible to express b(2mn) in terms of a linear
combination of the numbers b(n), b(n — 1),..., 6(0)

6(2-rc) = i Cm>ib(n-i).
•1=0

The coefficients Cmi are positive integers and

C1A = 1 for all i^O,

Cm+i.i= %CmJ for all m>l.
3 = 0

Proof. For m = 1 we have already seen that the first part of the theorem holds and
a t O l i = 1.
Suppose the theorem holds for m = s where 5 ^ 1 , then

and so 6(2S+1») = b{2*.2n) = 2 Csib(2n-i)
i0 'i=0

n
= CS;06(2») + S (CSi w_j + Cs 2j) b(2n- 2j) from (4)

= C8,02 b(k) + i ((Gs_ w_! + Cs_ v) Y b(k)\ from
fc = 0 i = l \ fc = 0 /

(6)

n 2k
= S S GSJb(n-k).

k=03=0

Hence 6(2S+1%) = £ C
i=0

2i
where Cs+1 f = 2 Cs ,

3 = 0 '

and the theorem follows by induction.
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By using the theorem we can work out a table of the values of the coefficients Cmi.
A section of this table for 1 < TO. ̂  5 and 1 < i < 7 is shown below. The table can be
used to express b(2kn) as the sum of b(n), b(n —I), etc., for example

b(32n) = b{n) + 20lb(n- 1) + 16256(»-2) + ....

m
1
2
3

We now use the first two lines of the table to prove

THEOREM 2.

(i) b(n) = 0(mod 2) for all n 3s 2;
(ii) b(n) = 0(mod4) if and only if n or n - 1 = 4m.(2&+l), m ^ l ;
(iii) b(n) = 0(mod 8) for no value of n.

Proof, (i) 6(0) = 6(1) = 1; 6(2) = 6(3) = 2. Suppose b(m) = 0(mod2) for all m in
<2, 2n- 1> where n Ss 2 then

6(27i+l) = 6(2%) = 6(2rc-2) + 6(?i) = 0 (mod 2)

since n and 2n — 2 he in the interval (2,2n— 1>. Thus the interval is extended to
(2,2n +1> and the result follows by induction.

(ii) We write n = 4m. s where m ^ 0 and s ̂  0 (mod 4).

Case 1. TO > 1. In this case n = 4ms = 4P, say, where P = 0 (mod 4). The second
row of the table gives us the reduction formula

Since P is even 6 ( P - 1) = 6 ( P - 2), 6 ( P - 3) = 6 ( P - 4), etc., hence

6(4P) = 6(P) + 86(P-2) + 166(P-4) + ...+4P6(0)

and so 6(4P) = 6(P) (mod 8).
Hence, for TO > 1

6(4m.s) s6(4m-1.s) (mod8). (7)

We note that (7) is valid also if TO = 1 provided s is even. The analysis is exactly the
same as above. We now analyse this case further.

Case 2. TO = 1, 5 = 0 (mod2). Since 5^0 (mod 4) we can write s = 4t + 2. From (7)

6(4s)=6(s) (mod 8).

From (5) b(s) = 6(4« + 2) = b(4t) + b(2t +1) = b(U) + b(2t).

Now 6(4t) = 6(t) + 36(£ - 1 ) + 5b(t - 2) + ...

and b(2t) = b(t) + b(t-l) + b(t-2) +....
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Hence b(s) = 2b(t) + 4b(t-l) + 6b(t-2) +... + 2tb(l) + (2t + 2)b(0).

Since b(r) = 0(2) for all r 5= 2 it follows that

b(s) = b(4t + 2) = (^t + 2) = 2 (mod 4). (8)

Combining (7) and (8) we deduce, for all m Ss 0

6(4m(4« + 2)) = 2 (mod 4). (9)

Case 3. m = 1, s s 1,3 (mod 4). We now have s = 1 (mod 2) and so

whence 6(4s) = 4s (mod 8) = 4 (mod 8)
since s is odd.

Thus we have proved that

b{n) = 4(mod8) if w = 4m.(2fc+l) and m > l (10)

and we have also proved tha t

b(n) = 2 (mod4) if JI = 4m.(4« + 2) and m ^ 0. (11)

The only remaining case is n = (2k +1) but this case reduces to (10) and (11) since
b(2k+l) = b(2k).

Combining (10) and (11) we see that

b(n) = 4 (mod 8 ) E O (mod 4) if and only if n = 4m. (2k +1) if n is even

or n-\ = 4m.(2fc + l) if nis odd

and b(n) = 2 (mod 4) for all other n ^ 2. Thus in no case is b(n) = 0(8) and (ii) and (iii)
of the theorem are proved.

. 3. The conjecture. We established in (7) that 6(4s) = b(s) (mod 8) if s is even. By
writing s = 2t we see that we have proved that, for all t

b(8t)-b(2t) = 0 (mod 8). (12)

Similarly, it can be proved that, for all t

b(16t)-b(4:t)sO (mod 32) (13)

and other results of the same kind. Each result can be proved by using the coefficients
of Table 1 to express b(2kt) as a sum involving 6(*),6(*— 1), ...,6(0) and also to express
b(2k~2t) as a sum of the same type. The numerical evidence indicates that such congru-
ence properties hold for arbitrarily large values of k and this leads to

Conjecture. If k ^ 1 and t = 1 (mod 2)

b(2^+H) - b(2ikt) = 0 (mod 23fc+2),

b(22k+H) - b(2™-H) = 0 (mod 23k).
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The evidence further indicates that these congruences hold exactly, i.e. that no higher
power of 2 divides 6(4n) — b(n). Thus, for example

6(210)-6(28) = 2,320,518,948-692,004 = 141,591 x 214

and 6(7.27) - 6(7. 2s) = 962,056,258 - 355,906 = 1,878,321 x 29

and 6(3.28) - 6(3.26) = 357,547,444 - 169,396 = 174,501 x 211

and 6(53.24)- 6(53.22) = 673,353,212-272,156 = 21,033,783 x 25.

In each case the power of 2 is precisely the one predicted by the conjecture.
A table of values of b(n) is given at the end of the paper.

4. Partitions of powers of other integers. I have also used the computer to study the
number of partitions, t(n), of TO as a sum of powers of an integer m > 2. There is, in
general, no simple equivalent of Theorem 2. Theorem 1 and the conjecture carry
through to a considerable extent though the precise form of the conjecture depends
upon whether TO is prime or composite. The strongest congruences usually involve the
difference t(mr+1. k) — t(mr. k), rather than t(mr+2. k) — t(mr. k) which is what one might
expect from the case m = 2. Also the (suspected) property of exact divisibility by a
power of 2 does not carry over to exact divisibility by a power of TO. For example, if
TO = 3 and t(n) denotes partitions of n as a sum of powers of 3 then

*(9) —*(3) = 3, t(21)-t(9) = 2-32, *(81)-«(27) = 23.33

and <(243)-«(81) = 23-35, (14)

whereas «(4-243)-«(4-81) = 173.38 (15)

and yet f(729)-f(243) = 53.11.35. (16)

From (14), (15), (16) it appears that any conjecture corresponding to the one above is
unlikely to predict the exact power of TO which divides t(mr+1. k) — t(mr. k) for TO ̂  3.
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Table 1. Values of the binary partition function

n b(n) n b(n)

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

1
2
4
6
10
14
20
26
36
46
60
74
94
114
140
166
202
238
284
330
390
450
524
598
692
786
900
1014
1154
1294
1460
1626
1828
2030
2268
2506
2790
3074
3404
3734
4124
4514
4964
5414
5938
6462
7060
7658
8350
9042
9828

102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200

10,614
11,514
12,414
13,428
14,442
15,596
16,750
18,044
19,338
20,798
22,258
23,884
25,510
27,338
29,166
31,196
33,226
35,494
37,762
40,268
42,774
45,564
48,354
51,428
54,502
57,906
61,310
65,044
68,778
72,902
77,026
81,540
86,054
91,018
95,982
101,396
106,810
112,748
118,686
125,148
131,610
138,670
145,730
153,388
161,046
169,396
177,746
186,788
195,830
205,658


