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Asymptotic behaviour of the partition function

V. Yu. Protasov

Abstract. Given a pair of positive integers m and d such that 2 6 m 6 d, for
integer n > 0 the quantity bm,d(n), called the partition function is considered; this
by definition is equal to the cardinality of the set{

(a0, a1, . . . ) : n =
∑
k

akm
k, ak ∈ {0, . . . , d− 1}, k > 0

}
.

The properties of bm,d(n) and its asymptotic behaviour as n → ∞ are studied. A
geometric approach to this problem is put forward. It is shown that

C1n
λ1 6 bm,d(n) 6 C2n

λ2

for sufficiently large n, where C1 and C2 are positive constants depending on m

and d, and λ1 = lim
n→∞

log b(n)

logn
and λ2 = lim

n→∞
log b(n)

logn
are characteristics of the

exponential growth of the partition function. For some pair (m,d) the exponents λ1

and λ2 are calculated as the logarithms of certain algebraic numbers; for other pairs
the problem is reduced to finding the joint spectral radius of a suitable collection
of finite-dimensional linear operators. Estimates of the growth exponents and the
constants C1 and C2 are obtained.

Bibliography: 17 titles.

§ 1. Introduction

For a pair of positive integers m and d such that 2 6 m 6 d we consider the
quantity bm,d(n) equal to the number of possible partitionings of a fixed integer
n > 0 into a sum of powers of m with ‘digits’ from the set 0, . . . , d− 1:

n = a0 + a1m+ · · ·+ alm
l,

where l∈N∪{0} and ai ∈{0, . . . , d−1} for i = 0, . . . , l, al 6= 0. The function bm,d(n)
is called the partition function of order d with base m. The partition function of
order ∞ is defined by the equality bm,∞(n) = limd→∞ bm,d(n).

Partition functions are well known in mathematics. Euler considered the binary
partition function of infinite order b2,∞(n) involved in the expansion of the function

F (x) =
∞∏
j=0

(1− x2j)−1 =
∞∑
n=0

b2,∞(n)xn.
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Arithmetical and analytic properties of partition functions have been studied by
many authors such as Tanturri, Mahler, Knuth, de Bruijn, Churchhouse, Reznick
(see the bibliography). In particular, explicit formulae are known for binary parti-
tion functions with small values of the order d:

(1) b2,2(n) ≡ 1 (Euler [1]);
(2) b2,3(n) = s(n+1) (Reznick [2]), where s(n+1) is the so-called Stern sequence

which is defined recursively as follows: s(0) = 0, s(1) = 1, s(2x) = s(x),
s(2x+ 1) = s(x) + s(x + 1) (see [3]);

(3) b2,4(n) = bn/2c+1 (Klosinsky, Alexanderson, Hillman [4]), where bxc is the
largest integer not exceeding x (and dxe is the smallest integer not smaller
than x).

Arguably, this list exhausts all ‘well-behaved’ partition functions. For other
values of d there can hardly exist formulae of this simplicity for the calculation
of b2,d(n). In these circumstances the most interesting problem is to study the
asymptotic behaviour of b2,d(n) as n→∞. The first result in this direction is due
to Mahler [5], who showed that

log2 b2,∞(n) ∼ log2
2 n

log2 4
as n→∞.

This result has been repeatedly improved upon; see, for instance, [6], [7].
Reznick [2] considers the case of finite order d and shows that for d = 2r, r > 1,

we have the following asymptotics:

b2,2r(n) ∼ cnr−1 as n→∞ (1)

with constant c independent of r. If d is not a power of two, then the asymptotic
formula becomes more complicated. For even d we have

C1n
log2 k 6 b2,2k(n) 6 C2n

log2 k, n ∈ N, (2)

where the constants C1 and C2, 0 < C1 6 C2, depend on k. The picture for
odd d is a different one. Reznick considers the following limits, which one could
appropriately call the lower and upper growth exponents:

λ1 = lim
n→∞

log b(n)

logn
, λ2 = lim

n→∞

log b(n)

logn
. (3)

If b(n) = b2,2k(n), then it follows from (2) that λ1 = λ2 = log2 k. However, it turns
out that for d odd (that is, for b(n) = b2,2k+1(n)) the exponents λ1 and λ2 are not
the same in general. For d = 3 these exponents can be explicitly calculated:

λ1 = 0, λ2 = log2

√
5 + 1

2
. (4)

For d = 2k + 1, k > 2, it can be shown that λ1 and λ2 are positive and finite, but
they have not been explicitly calculated for any k > 2, although there exist some
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estimates [2]. Reznick also could not answer the question on a possible general-
ization of inequality (2) to odd orders d > 5. In other words, is it true that for
b(n) = b2,d(n) the limits

α = lim
n→∞

b(n)n−λ1 , β = lim
n→∞

b(n)n−λ2 (5)

are positive and finite for each d > 3?
In the present paper we consider the general case, that is, partition functions

with general basem > 2. For an arbitrary pair (m, d) (2 6m 6 d−1) we prove that
the growth exponents λ1 and λ2 defined by equalities (3) with b(n) = bm,d(n) are
finite. Moreover, if m+ 1 6 d 6 2m− 1, then λ1 = 0, otherwise λ1 > 0. We reduce
the problem of the calculation of λ1 and λ2 to finding the joint spectral radius of
an appropriate family of finite-dimensional linear operators. For some pairs (m, d)
we calculate the growth exponents explicitly, while for others we find estimates.
In particular, for the binary partition function (m = 2) we find λ1 and λ2 for the
orders d = 5, 7, 9, 11, and 13, and we also formulate a conjecture generalizing this
result to all odd orders d.

We prove that the limits α and β defined by (5) for b(n) = bm,d(n) are positive
and finite for each pair (m, d). This means, in particular, that we answer Reznick’s
question in the affirmative: inequality (2) does indeed hold for each pair (m, d).
For all m and d such that 2 6 m 6 d− 1 there exist positive constants C1 and C2

such that
C1n

λ1 6 bm,d(n) 6 C2n
λ2 , n ∈ N. (6)

For each pair (m, d) we obtain estimates of the quantities λ1, λ2, α, and β.
In the present paper we put forward a geometric approach to the analysis of

partition functions. The central idea is that, in place of the function b(n), we study
the vector-valued function

v(n) =
(
b(n), . . . , b(n− s+ 1)

)T ∈ Rs,
where the dimension s is defined separately for each pair (m, d). The vector v(n)
here can be obtained from another vector v(0) by the application of an appropri-
ate sequence of linear operators. Next we study the asymptotic behaviour of the
quantity ‖v(n)‖ as n → ∞ making use of the joint spectral radius and the lower
spectral radius of these operators.

The paper falls into several sections. In § 2 we recall the definitions and the
basic properties of the joint spectral radius and the lower spectral radius. In §§ 3
and 4 we study some special properties of operators with invariant cone. Next,
in § 5, we prove our main result, Theorem 1 on the asymptotic behaviour of the
partition function. Finally, in § 6 we develop a method for the calculation of the
growth exponents λ1 and λ2 and set forth the results of our calculations for m = 2
and some odd orders d.

§ 2. Joint spectral radius

Let A = {A0, . . . , Am−1}, where m ∈ N, be a finite collection of linear opera-
tors in the Euclidean space Rs, s ∈ N. For a fixed positive integer ` let max`A
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and min`A be the following quantities:

max
`
A = max

dj∈{0,...,m−1}
j=1,...,`

‖Ad1 · · ·Ad`‖,

min
`
A = min

dj∈{0,...,m−1}
j=1,...,`

‖Ad1 · · ·Ad`‖.
(7)

Definition 1. The limits

ρ̂(A) = lim
`→∞

(max
`
A)1/`,

ρ̌(A) = lim
`→∞

(min
`
A)1/`

are called the joint spectral radius and the lower spectral radius of the collection
A = {A0, . . . , Am−1}, respectively.

The concept of joint spectral radius appeared for the first time in [8], where it was
used in a problem in the theory of normed algebras. After that joint spectral radii
found many applications in wavelet theory, functional equations, approximation
theory, fractals (see the vast bibliography on this subject in [9] and [10]). The
concept of lower spectral radius was introduced in [11]. We shall use only the most
basic properties of these characteristics.

(1) If A0 = · · · = Am−1, then ρ̌(A) = ρ̂(A) = ρ(A0), where ρ(A0) is the (usual)
spectral radius of A0, that is, the largest absolute value of its eigenvalues.

(2) For an arbitrary collection of operators {A0, . . . , Am−1} we have

ρ̂(A) = lim
`→∞

max
(d1,...,d`)∈{0,...,m−1}`

(ρ(Ad1 · · ·Ad`))1/`. (8)

(3) For an arbitrary collection of operators {A0, . . . , Am−1} the following
inequalities hold:

max
(d1,...,d`)∈{0,...,m−1}`

(ρ(Ad1 · · ·Ad`))1/` 6 ρ̂(A) 6 (max
`
A)1/`, (9)

ρ̌(A) 6 min
(d1,...,d`)∈{0,...,m−1}`

(ρ(Ad1 · · ·Ad`))1/` 6 (min
`
A)1/`. (10)

The proofs can be found in [11] and [12].

§ 3. Operators with invariant cone

Using the joint and the lower spectral radii we can find estimates of max`A
and min`A. These estimates are often crude, but they are quite satisfactory under
certain assumptions about the operators. For instance, [10] considers the case
of an irreducible collection of operators (that is, having no common non-trivial
invariant subspaces). Stronger assumptions about the operators were put forward
in [13], [14]. We consider here another case; namely, we assume that the operators
have a common invariant cone.
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Definition 2. A subset K of the Euclidean space Rs is called a convex closed
non-degenerate cone (or simply a cone in what follows) if

(a) x+ y ∈ K for all x, y ∈ K;
(b) for each x ∈ K \{0} and each real coefficient λ the point λx lies in K if and

only if λ > 0;
(c) K is a closed subset of Rs of dimension s, which means that there exists a

ball E(a, ε) = {a+ x : ‖x‖ 6 ε} lying in K.

Definition 3. A cone K ⊂ Rs is called an invariant cone of a collection of opera-
tors A = {A0, . . . , Am−1} if

AK =
m−1⋃
i=0

AiK ⊂ K. (11)

We consider now several special properties of operators with invariant cone.

Lemma 1. For each cone K ⊂ Rs and each norm in the space Rs there exists
a constant µ depending on the cone and the norm such that for all x, y ∈ K the
‘reverse triangle inequality’

‖x+ y‖ > µ(‖x‖+ ‖y‖)

holds. For the Euclidean norm µ = cos(ϕ/2), where ϕ is the largest angle between
two vectors in K.

Proof. It suffices to consider the case of the Euclidean norm. Since K is a closed
non-degenerate cone, it follows that ϕ < π. Hence

‖x+ y‖2 > ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ · cosϕ > (‖x‖+ ‖y‖)2 cos2 ϕ

2
. (12)

The proof is complete.

Lemma 2. Let B be an operator with invariant cone K; then for each pair of
vectors t1, t2 ∈ K,

‖B(t1)‖ · ‖t2‖ > µh(t1)‖B(t2)‖, (13)

where h(t1) is the distance from the point t1 to the boundary of K.

Proof. For t2 = 0 there is nothing to prove. If t2 6= 0, then there exists α > 0 such
that t1 6= αt2. We consider the point

y = t1 +
t1 − αt2
‖t1 − αt2‖

h(t1).

Clearly, y ∈ K. Applying Lemma 1 to the vectors B(y) and
αh(t1)

‖t1 − αt2‖
B(t2) we

obtain (
1 +

h(t1)

‖t1 − αt2‖

)
‖B(t1)‖ =

∥∥∥∥B(y) +
αh(t1)

‖t1 − αt2‖
B(t2)

∥∥∥∥
> µ

(
‖B(y)‖ +

αh(t1)

‖t1 − αt2‖
‖B(t2)‖

)
> αµh(t1)

‖t1 − αt2‖
‖B(t2)‖.
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Thus, (
1 +

h(t1)

‖t1 − αt2‖

)
‖B(t1)‖ > αµh(t1)

‖t1 − αt2‖
‖B(t2)‖. (14)

Passing to the limit in (14) as α→ +∞ we obtain

‖B(t1)‖ > µh(t1)

‖t2‖
‖B(t2)‖,

which proves Lemma 2.

For t ∈ K \ {0} let

γ(t) =
h(t)

‖t‖ . (15)

Then we can write inequality (13) as follows:

‖B(t1)‖
‖t1‖

> µγ(t1)
‖B(t2)‖
‖t2‖

for all t1, t2 ∈ K \ {0}.
We consider now a family of operators A = {A0, . . . , Am−1} with invariant cone

K ⊂ Rs and a point x ∈ K. Let max`A(x) and min`A(x) denote the following
quantities:

max
(d1,...,d`)∈{0,...,m−1}`

‖Ad1 · · ·Ad`(x)‖, min
(d1,...,d`)∈{0,...,m−1}`

‖Ad1 · · ·Ad`(x)‖.

We must find estimates of them for each positive integer `. Some results in this
direction are available in [10], where we consider the general case (not assuming the
existence of an invariant cone). We now require better estimates. To begin with
we recall several definitions.

Definition 4. A subspace L ⊂ Rs of dimension s− 1 is called a support plane of
a cone K if L ∩K 6= {0}, but L ∩ intK = ∅.

Definition 5. A subspace L of Rs is called a boundary plane of a cone K if it is
the linear hull of the intersection of this cone and some support plane of it.

Consider now a subset M of the boundary of a cone K ⊂ Rs. Assume that M
lies in some boundary plane of the cone. We call the intersection of the various
boundary planes containing M the minimal boundary plane of M . For a fixed
subset Y of Rs and a ∈ Rs the equality 〈a, Y 〉 = 0 means that 〈a, x〉 = 0 for all
x ∈ Y . The reader can easily prove for himself the following result.

Lemma 3. Let Y ⊂ ∂K \ {0} be a subset of some boundary plane of a cone K.
Then a vector y ∈ Rs belongs to the minimal boundary plane of Y if and only if for
each a ∈ Rs the condition { 〈a, Y 〉 = 0,

〈a,K〉 6 0
(16)

yields the equality 〈a, y〉 = 0.
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Lemma 4. Let K ⊂ Rs be an invariant cone of an operator B. We consider
a non-empty subset Y of ∂K \ {0} lying in some boundary plane of the cone K.
Let M be the minimal boundary plane of Y . Then the condition BY ⊂ Y yields the
inclusion BM ⊂M .

Proof. Assume that BY ⊂ Y , but BM 6⊂ M . Then there exists y ∈ M such that
By /∈ M . By Lemma 3 there exists a ∈ Rs such that 〈a, Y 〉 = 0, 〈a,K〉 6 0, but
〈a, By〉 6= 0. Then 〈B∗a, Y 〉 = 0, 〈B∗a,K〉 6 0, and 〈B∗a, y〉 6= 0. However, y ∈M ,
so that the last inequality is in contradiction with Lemma 3.

Lemma 5. Let K be an invariant cone of an operator B. If Bx = 0 for some
x ∈ intK, then B is identically zero.

Proof. If B 6≡ 0, then we can select y ∈ K and ε ∈ R \ {0} such that By 6= 0 and
the points x+ εy and x− εy lie in K, which contradicts the non-degeneracy of K.

Having finished with the preliminary work we can now proceed to the estimates
of the quantities max`A(x) and min`A(x) in terms of ρ̂(A) and ρ̌(A). First, we
analyse the two special cases ρ̂(A) = 0 and ρ̌(A) = 0.

Remark 1. In the proof of Lemmas 6 and 7 we shall use a special norm in Rs
corresponding to the cone K. The unit sphere in this norm is the boundary of the
set conv(S∩K,−(S∩K)), where S is the unit Euclidean ball in Rs. This norm has
the following property: the norm of an operator with invariant cone K is attained
at some vector in this cone.

Lemma 6. Let A = {A0, . . . , Am−1} be a collection of operators with invariant
cone K ⊂ Rs.

(a) If ρ̌(A) = 0, then the kernel of one of these operators contains a boundary
plane of K.

(b) If ρ̂(A) = 0, then the intersection of the kernels of A0, . . . , Am−1 contains
a boundary plane of K.

Proof. (a) If Ai = 0 for some i, then there is nothing to prove. Assume that Ai 6= 0
for all i = 0, . . . , m − 1. Let Li denote the linear hull of the set KerAi ∩ ∂K.
Lemma 5 shows that

KerAi ∩ intK = {0}.
Hence Li ∩ intK = ∅. We now discuss the two possible cases.

(1) Li 6= {0} for some i ∈ {0, . . . , m − 1}. Let Mi be the minimal boundary
plane of Li. Since AiLi ⊂ Li, it follows by Lemma 4 that AiMi ⊂ Mi. If,
moreover, Li = Mi, then the proof is complete, while if Li 6= Mi, then for
some y ∈ Mi we have Aiy 6= 0. Next, for arbitrary P ⊂ Rs we set P ∗ =
{x ∈ Rs : 〈x, P 〉 6 0}. For each x ∈ (AiK)∗ we have 〈A∗i x,K〉 6 0 and, in
addition, 〈A∗i x, Li〉 = 〈x, AiLi〉 = 0, because Li ⊂ KerAi. Hence 〈A∗i x, y〉 =
0 by Lemma 3, so that 0 = 〈A∗i x, y〉 = 〈x, Aiy〉. Thus, (AiK)∗ ⊂ (Aiy)

⊥

and therefore K∗ ⊂ (Aiy)
⊥. Hence intK∗ = ∅, which contradicts the

non-degeneracy of the cone K.
(2) Li = {0} for each i = 0, . . . , m− 1. In this case the quantity

α1 = min
x∈K, ‖x‖=1
i=0,...,m−1

‖Aix‖
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is positive, therefore

‖Ad1 · · ·Ad`y‖ > α`1‖y‖

for each y ∈ K and each collection of indices {dj} ∈ {0, . . . , m− 1}`. Hence

we immediately obtain the equality ρ̌(A) = lim`→∞(min`A)1/` > α1 > 0,
which contradicts the condition ρ̌(A) = 0.

(b) Let L denote the linear hull of the set ∂K∩KerA0∩· · ·∩KerAm−1. If L 6= {0},
then we can show as in case (a) that L coincides with its minimal boundary plane.
On the other hand, if L = {0}, then

β1 = max
i=0,...,m−1

min
x∈K
‖x‖=1

‖Aix‖ > 0.

Hence for each y ∈ K there exists j ∈ {0, . . . , m− 1} such that ‖Ajy‖ > β1y. Con-
sequently, max`A(y) > β`1‖y‖ for each ` > 1, so that ρ̂(A) > β1. This contradiction
completes the proof of Lemma 6.

Lemma 7. For an arbitrary collection of operators A = {A0, . . . , Am−1} with
invariant cone K ⊂ Rs there exist points z1, z2, z3, z4 ∈ K \ {0} such that for
each ` > 1,

(a) max`A(z1) 6 ρ̂`‖z1‖,
(b) max`A(z2) > ρ̂`‖z2‖,
(c) min`A(z3) 6 ρ̌`‖z3‖,
(d) min`A(z4) > ρ̌`‖z4‖.

Proof. If ρ̂ = 0, then assertion (b) is obvious, and (a) is a consequence of Lemma 6.
In the same way we can establish (c) and (d) for ρ̌ = 0. Thus, we shall assume in
our discussion of (a) and (b) that ρ̂ 6= 0, and in the discussion of (c) and (d) we
assume that ρ̌ 6= 0. Let K1 be the intersection of K with the unit sphere and let

‖A‖ = sup
j=0,...,m−1

‖Aj‖.

(a) Assume the contrary: for each x ∈ K \ {0} there exists ` ∈ N and a collection
{d1, . . . , d`} ∈ {0, . . . , m− 1}` such that ‖Ad1 · · ·Ad`(x)‖ > ρ̂`‖x‖. Next, for each
i > 1 we set

Ui = {x ∈ K1 : there exists ` 6 i such that max
`
A(x) > ρ̂`}.

We have

U1 ⊂ U2 ⊂ · · · and
∞⋃
i=1

Ui = K1.

The set K1 is compact, therefore for large N we have

UN =
N⋃
i=1

Ui = K1.
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Hence

β2 = min
x∈K1

max
`6N

(ρ̂−` max
`
A(x)) > 1. (17)

We consider now arbitrary x1 ∈ K \ {0}. Using (17) we obtain a quantity `1 6 N
and a product of operators

∏
`1

= Ad1 · · ·Ad`1 such that

∥∥∥∥∏
`1

(x1)

∥∥∥∥ > β2ρ̂
`1‖x1‖.

Setting x2 =
∏
`1
x1 we find `2 6 N and a product

∏
`2

= Ad`1+1 · · ·Ad`1+`2
such

that ∥∥∥∥∏
`2

(x2)

∥∥∥∥ > β2ρ̂
`2‖x2‖.

Repeating this q times we obtain

‖xq‖ > βq−1
2 ρ̂`1+···+`q−1‖x1‖,

which shows that∥∥∥∥∏
`q−1

· · ·
∏
`1

∥∥∥∥ > βq−1
2 ρ̂`1+···+`q−1 , `k 6 N, k = 1, . . . , q− 1.

We raise both sides to the power (`1 + · · ·+ `q−1)−1 and pass to the limit as q →∞
to obtain the inequality ρ̂ > β1/N

2 ρ̂. This contradiction completes the proof of (a).

(b) Assume the contrary: for each point x ∈ K \{0} there exists ` ∈ N such that
max`A(x) < ρ̂`‖x‖. For arbitrary i > 1 we set

Vi = {x ∈ K1 : there exists ` 6 i such that max
`
A(x) < ρ̂`}.

Clearly, V1 ⊂ V2 ⊂ · · · and, in addition,
⋃∞
i=1 Vi = K1. Since K1 is compact, there

exists N such that

γ1 = max
x∈K1

min
`6N

(
ρ̂−` max

`
A(x)

)
< 1. (18)

Consider arbitrary x1∈K\{0}, j >N , and a sequence {d1, . . . , dj}∈{0, . . . , m− 1}j.
By the definition of γ1 there exists `1 6 N such that max`1 A(x1) 6 γ1ρ̂

`1‖x1‖.
Hence

‖Adj−`1+1 · · ·Adjx1‖ 6 γ1ρ̂
`1‖x1‖.

We now set x2 = Adj−`1+1 · · ·Adjx1 and find `2 < N such that

max
`2

A(x2) 6 γ1ρ̂
`2‖x2‖.
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Next, let x3 = Adj−`1−`2+1 · · ·Aj−`1x2, and so on, until at some ith step we obtain
the inequality `1 + `2 + · · ·+ `i+1 > j. Thus,

‖Ad1 · · ·Adjx1‖ 6 ‖Ad1 · · ·Adj−`1−···−`i ‖ · γ
i
1ρ̂
`1+···+`i‖x1‖.

Note now that ‖Ad1 · · ·Adj−`1−···−`i ‖ 6 max(1, ‖A‖N). On the other hand,

ρ̂`1+···+`i 6 ρ̂j

min(1, ρ̂N)
.

Since i > j/N − 1, it follows that

‖Ad1 · · ·Adjx1‖ 6
max(1, ‖A‖N)

min(1, ρ̂N )
· ρ̂jγj/N−1

1 ‖x1‖.

The same holds for each product of operators of length j and each point x1 ∈ K\{0}.
Hence we may set ‖Ad1 · · ·Adj‖ = maxj A and moreover,

‖Ad1 · · ·Adjx1‖ = ‖Ad1 · · ·Adj‖ · ‖x1‖

(see Remark 1). Thus,

max
j
A 6 max(1, ‖A‖N)

min(1, ρ̂N)
ρ̂jγ

j/N−1
1 .

Raising both sides to the power j−1 and passing to the limit as j →∞ we obtain

the inequality ρ̂ 6 γ1/N
1 ρ̂. This contradiction completes the proof of (b).

(c) If there exists z ∈ K \ {0} such that for some i ∈ {0, . . . , m − 1} we have
Aiz = 0, then (c) holds for z3 = z. If there exists no such point, then

a = min
i=0,...,m−1

x∈K1

‖Aix‖ > 0.

Assume now that (c) does not hold; then, as in the proof of (b), we can find `, N ∈ N
and γ2 > 1 such that ` 6 N and the inequality

min
`
A(x) > γ2ρ̌

`‖x‖

holds for each x ∈ K \ {0}. We now pick arbitrary x1 ∈ K \ {0} and a product
Ad1 · · ·Adj of length j > N . As in (b), we construct a sequence x1, x2, . . . , xi+1

such that

xk+1 = Adj−`1−···−`k+1 · · ·Adj−···−`k−1
xk, ‖xk+1‖ > γ2 ρ̂

`‖xk‖
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for each k= 1, . . . , i. Here `0 = 0 and i is the largest integer such that `1+· · ·+`i 6 j.
Thus, ‖xi+1‖ > γi2ρ̌`1+···+`i‖x1‖. Hence

‖Ad1 · · ·Adjx1‖ = ‖Ad1 · · ·Adj−`1−···−`i+1xi‖ > aj−`1−···−`i‖xi‖

> γi2ρ̌`1+···+`i−1aj−`1−···−`i−1‖x1‖ >
min(1, aN)

max(1, ρ̌N)
ρ̌jγ

j/N−1
2 ‖x1‖.

The above inequality holds for each product of length j, therefore

min
j
Ax1 >

min(1, aN)

max(1, ρ̌N)
ρ̌jγ

j/N−1
2 ‖x1‖.

Raising both sides to the power j−1 and passing to the limit as j →∞ we obtain

the inequality ρ̌ > γ1/N
2 ρ̌. This is a contradiction, which proves (c).

(d) Assume the contrary: for each x ∈ K \ {0} there exists ` ∈ N and a product
Ad1 · · ·Ad` such that ‖Ad1 · · ·Ad`x‖ < ρ̌`‖x‖. We now repeat the proof of (a)
replacing throughout “min”, “ρ̌”, and “>” by “max”, “ρ̂”, and “6”, respectively.
For arbitrary x1 ∈ K \ {0} we construct a sequence x1, x2, . . . and products of
operators

∏
`1
,
∏
`2
, . . . such that for each q ∈ N we have

∥∥∥∥∏
`q−1

· · ·
∏
`1

x1

∥∥∥∥ 6 βq−1
3 ρ̌`1+···+`q−1‖x1‖,

where β3 < 1. We shall assume without loss of generality that h(x1) > 0. Let
x0 ∈ K be a point such that∥∥∥∥∏

`q−1

· · ·
∏
`1

x0

∥∥∥∥ =

∥∥∥∥∏
`q−1

· · ·
∏
`1

∥∥∥∥ · ‖x0‖

(see Remark 1). Applying Lemma 2 we obtain

∥∥∥∥∏
`q−1

· · ·
∏
`1

∥∥∥∥ =
‖
∏
`q−1
· · ·
∏
`1
x0‖

‖x0‖
6
‖
∏
`q−1
· · ·
∏
`1
x1‖

µh(x1)
.

Thus, ∥∥∥∥∏
`q−1

· · ·
∏
`1

∥∥∥∥ 6 1

µh(x1)
βq−1

3 ρ̌`1+···+`q−1‖x1‖.

We raise both sides to the power (`q−1 + · · ·+`1)−1 and pass to the limit as q→∞.

We obtain the inequality ρ̌ = β
1/N
3 ρ̌, contradicting the assumptions. The proof is

complete.
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Proposition 1. Let A = {A0, . . . , Am−1} be an operator family with invariant
cone K ⊂ Rs. Then for all x ∈ intK and ` ∈ N,

(a) min`A(x) > ρ̌`µγ(x)‖x‖;
(b) max`A(x) > ρ̂`µγ(x)‖x‖, where the constant µ = µ(K) has been defined in

Lemma 1;
(c) if no common eigenspace of the operators A0, . . . , Am−1 is a boundary plane

of the cone K, then there exists a constant H > 0 such that for each x ∈ K,

max
`
A(x) 6 Hρ̂`‖x‖.

Proof. (a) Lemma 7 shows that there exists a point z3 ∈ K \{0} such that for each
` ∈ N we have

min
`
A(z3) > ρ̌`‖z3‖.

Let x ∈ intK be arbitrary. Applying Lemma 2 to x and z3 we obtain

min
`
A(x)‖z3‖ > µγ(x)‖x‖min

`
A(z3) > µγ(x)‖x‖ρ̌`‖z3‖,

which proves (a). Assertion (b) can be proved in a similar way. We proceed to (c).
Lemma 6 allows us to assume without loss of generality that ρ̂ 6= 0. Let U be the set
of points y ∈ Rs such that the set {ρ̂−` max`A(y), ` ∈ N} is bounded. Clearly, U is
a common eigenspace of A0, . . . , Am−1. In addition, U ∩K 6= {0} (as follows from
Lemma 7(a)). Two cases are now possible.

(1) U ∩ intK 6= ∅. Lemma 2 shows that for all y0 ∈ U ∩ intK and x ∈ K we
have

max
`
A(y0)‖x‖ > µh(y0) max

`
A(x).

Next, it follows from the definition of U that there exists a constant H such
that max`A(x) 6 Hρ̂`‖x‖.

(2) U ∩ intK = ∅. In this case U ∩K ⊂ ∂K, therefore, using Lemma 7 we see
that U ∩ ∂K 6= {0}. Let M be the minimal boundary plane of U ∩ ∂K. By
Lemma 4, M is a common eigenspace of the operators A0, . . . , Am−1. This
is a contradiction, which completes the proof of Proposition 1.

Remark 2. One more result suggests itself in the statement of Proposition 1, which
could seem incomplete otherwise. Namely, one could conjecture that under certain
conditions on the common eigenspaces of the operators A0, . . . , Am−1 there exists
H1 > 0 such that for all ` ∈ N and x ∈ K we have

min
`
A(x) 6 H1ρ̌

`‖x‖. (19)

However, this is not true in the general case. Consider the following example.
Let A0 and A1 be two linear operators in R2:

A0 =

(
0 1
2 0

)
, A1 =

(
0 1/2
1 1

)
.
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They are non-degenerate and have no common eigenspaces. The positive coordinate
sector K = {(x1, x2) ∈ R2 : x1, x2 > 0} is a common invariant cone. Nevertheless,
inequality (19) does not hold for these operators. Indeed, ρ(A0A1) = 1, so that
ρ̌ 6 1 by (10). On the other hand, considering the norm ‖(x1, x2)‖1 = |x1| + |x2|
in R2 we obtain

‖A0x‖1 > ‖x‖1, ‖A1x‖1 > ‖x‖1 for all x ∈ K.

Hence ρ̌ > 1 and therefore ρ̌ = 1. Next, for each x ∈ K we have

A2
0x = 2x, ‖A2

1x‖1 >
3

2
‖x‖1, (20)

therefore for each x ∈ intK and each sequence of zeros and ones d1d2 . . . we have

Ad1 · · ·Adjx→∞ as j →∞. (21)

For if this sequence contains infinitely many pairs of the form (0, 0) or (1, 1),
then (21) is a consequence of (20). On the other hand, for each x ∈ intK we
have

(A0A1)kx→∞ as j →∞.

Thus, (19) fails for A0 and A1.

Remark 3. The assumption about the common eigenspaces of A0, . . . , Am−1 is
essential in part (b) of Proposition 1. For let us consider the ‘collection’ consisting
of a single operator A0 in R2:

A0 =

(
1 1
0 1

)
.

Let K be the same invariant cone as in Remark 2. It is easy to see that ρ̂ = 1;
however A`0x→∞ as `→∞ for each x ∈ intK .

The growth estimate in Proposition 1(c) is not convenient for practical purposes
because the constant H depends also on A0, . . . , Am−1 in addition to the invariant
cone and can, generally speaking, be arbitrarily large (see [10]). Moreover, we do
not have a similar lower bound for max`A(x) in the general case (Remark 2). These
difficulties can be overcome by means of a second invariant cone.

§ 4. Second invariant cone

Definition 6. A cone K′ ⊂ Rs is said to be embedded in a cone K if the inclusion
(K′ \ {0}) ⊂ intK holds.

Let (K,K′) be a pair of embedded cones (that is, K′ is embedded in K). We set

γ = γ(K,K′) = inf
x∈K′\{0}

h(x)

‖x‖ .

It is clear that γ > 0 and, in addition, γ(x) > γ for each x ∈ K′.
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Definition 7. A pair (K,K′) is called a pair of invariant cones (an invariant pair)
of a collection of operators A = {A0, . . . , Am−1} if K and K′ are invariant cones of
this collection and K′ is embedded in K.

Proposition 2. If a collection of operators A = {A0, . . . , Am−1} has an invariant
pair (K,K′), then for all x ∈ K′ and ` ∈ N,

ρ̌`µγ‖x‖ 6 min
`
A(x) 6 ρ̌`(µγ)−1‖x‖, (22)

ρ̂`µγ‖x‖ 6 max
`
A(x) 6 ρ̂`(µγ)−1‖x‖. (23)

Remark 4. Recall that the constant µ = µ(K) was defined in Lemma 1. It depends
on the cone K. In the case of the Euclidean norm µ = cos(ϕ/2).

Proof of Proposition 2. The left-hand sides of (22) and (23) are consequences of
Proposition 1. It remains to prove the right-hand sides. Applying Lemma 7 to the
cone K′ we obtain a point z3 ∈ K′ such that

min
`
A(z3) 6 ρ̌`‖z3‖ (24)

for each ` ∈ N. Consider now arbitrary x ∈ K′. Applying Lemma 2 to the points
z3, x, and the cone K we obtain

µγ(z3)‖z3‖min
`
A(x) 6 ‖x‖min

`
A(z3) 6 ρ̌`‖z3‖ · ‖x‖.

Since γ(z3) > γ, it follows that

min
`
A(x) 6 ρ̌`(µγ)−1‖x‖.

The inequality on the right-hand side of (23) can be established in a similar way.

We now present several examples of invariant pairs.

Example 1. Consider an arbitrary collection of operators A = {A0, . . . , Am−1}
with invariant cone K. Assume that for each j = 0, . . . , m− 1 the set AjK \ {0}
lies in the interior of K and let

AK = conv(A0K, . . . , Am−1K).

It is easy to establish the existence of a cone K′ in K such that AK ⊂ K′. Hence
(K,K′) is an invariant pair of the collection A.

Example 2. Let A0, . . . , Am−1 be matrices with positive entries. We shall take
the positive coordinate sector K = {(x1, . . . , xs) ∈ Rs : xi > 0, i = 1, . . . , s} for the
outer invariant cone; it then follows from the previous example that there exists
an invariant cone K′ embedded in K. Hence operators whose matrices contain
only positive entries always have an invariant pair. Note, however, that the collec-
tion {A0, A1} in Remark 2 possesses no invariant pairs, although the entries in the
matrices of A0 and A1 are non-negative.

Example 3. Theorem 2.1 in [14] provides sufficient conditions for the existence of
an invariant pair in the case of stochastic matrices.
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§ 5. Asymptotic behaviour of the partition function

We shall now use the above results in estimates of the function bm,d(n). We shall
prove that for each pair (m, d) there exist positive constants α1, α2, α3, and α4

dependent on m and d such that for each integer ` > 1 + logm d,

α1 6 max
m`−16n<m`

b(n)n−λ2 6 α2m, (25)

α3 6 min
m`−16n<m`

b(n)n−λ1 6 α4m, (26)

where λ1 and λ2 are defined in (3). We shall also show that λ1 = logm ρ̌ and
λ2 = logm ρ̂, where ρ̌ and ρ̂ are the lower spectral radius and the common spectral
radius of an appropriate collection of linear operators. We shall calculate these
quantities for some pairs (m, d) and find estimates for other pairs. We shall also
obtain estimates of α1, α2, α3, and α4.

Let (m, d) be a pair of positive integers such that 2 6 m 6 d− 1. We set

d = km+ r, (27)

where k ∈ N and r ∈ {0, . . . , m− 1}. For arbitrary positive integer n and arbitrary
t0 ∈ {0, . . . , m− 1} we consider the representation of mn+ t0 with radix m:

mn + t0 =
∑̀
j=0

ajm
j, aj ∈ {0, . . . , d− 1}. (28)

Since a0 ≡ t0 (mod m), it follows that a0 = k0m + t0 for some integer k0 > 0.
Hence

n − k0 =
∑̀
j=1

ajm
j−1. (29)

Since k0 ∈ {0, . . . , b(d− 1− t0)/mc}, the formulae (28) and (29) establish a one-to-
one correspondence between the representations of the quantity mn + t0 and the
representations of n, n− 1, . . . , n− b(d− 1− t0)/mc. In view of the relation

⌊
d− 1− t0

m

⌋
=

{
k, t0 < r,

k − 1, t0 > r,

we obtain the recursive formula

b(mn + t0) =

{
b(n) + · · ·+ b(n− k + 1), t0 > r,
b(n) + · · ·+ b(n− k), t0 < r,

(30)
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which can be written also as a matrix equality:



b(mn+m− 1)
b(mn+m− 2)

...
b(mn+ r)

b(mn + r − 1)
...

b(mn)
b(m(n − 1) +m− 1)

...

...

...
b(m(n − 1))

b(m(n − 2) +m− 1)
...
...
...
...



=



1 . . . 1 0 0 0 . . . . . .

1 . . . 1
...

...
...

...
...

...
...

...
... 1 0

...
...

... 1 1
...

...
...

...
...

...
...

1 . . . 1 1
...

...

0 1 . . . 1
...

...
...

...
... 0

... . . . . . .
...

...
... 1

...
...

...
...

...
...

0 1 . . . 1 1
...

0 0 1 . . . 1
...

...
...

...
...

...
...

... 1 . . . 1 0 . . . . . .
...

... 1 . . . 1 1
...

...
...

...
...





b(n)
b(n− 1)

...
b(n− k + 1)
b(n− k)

...

...

...

...

...

...

...

...

...

...

...
. . .



. (31)

Let M be the infinite matrix on the right-hand side of (31) and let (M)ij be the
entry in its ith row and its jth column, i, j ∈ N. The matrix M consists of equal
(m× (k + 1))-blocks of the following form:

m−r


r



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . . . . 1 0
...

...
...

...
...

...
1 . . . . . . 1 0
1 . . . . . . . . . 1
...

...
1 . . . . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The first (m − r) rows have the form (1, . . . , 1, 0) (k ones and one zero). The
remaining rows have the form (1, . . . , 1) (k + 1 ones). Thus, there are d ones
and m − r zeros in the block. It is located in the first m rows and the first k + 1
columns of M . The remaining entries of these rows are zeros. The next block lies
in the rows with indices m + 1, . . . , 2m and in columns 2 through (k + 2). The
remaining entries in rows m+1, . . . , 2m of M are zeros. The next block lies m rows
down and one column to the right, and so on.

We now split equality (31) into m linear relations in the space Rs, where s is as
follows:

s = k +

⌈
k + r − 1

m− 1

⌉
. (32)
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We consider the linear operators A0, . . . , Am−1 in Rs the matrices of which have
the following entries:

(At)ij = (M)i+m−t−1,j,

i, j ∈ {1, . . . , s}, t ∈ {0, . . . , m− 1}. (33)

This relation can be easily visualized: the matrix At is located in the first m
columns and in rows m− t, . . . , m− t+ s− 1 of M . The reader can easily prove for
himself that each row of the matrix of At contains a sequence of k or k + 1 ones;
its remaining components are equal to zero.

Consider now the vector-valued function

v(n) = vm,d(n) = (b(n), . . . , b(n− s+ 1))T ,

where b(n) =

{
bm,d(n), n > 0,

0, n < 0.

(34)

In particular, v(0) = (1, 0, . . . , 0)T . Formulae (30) and (31) are equivalent to the m
equalities

v(mn + t) = Atv(n), t = 0, . . . , m− 1. (35)

We have thus established the following result.

Lemma 8. For each pair (m, d), where 2 6 m 6 d−1, the function v(n) = vm,d(n)
can be calculated by the following formula:

v(n) = At0 · · ·At`−1v(0),

where t`−1, . . . , t0 are the digits in the (radix) representation of n in the number
system with base m:

n =
`−1∑
j=0

tjm
j , tj ∈ {0, . . . , m− 1}.

Lemma 8 provides a precise formula for the partition function bm,d(n) for each
pair m and d. We can now formulate our main result.

Theorem 1. For each pair (m, d), where 2 6 m 6 d − 1, there exist positive
constants α1, α2, α3, and α4 dependent on m and d such that for each ` > 1+logm d,

α1ρ̂
` 6 max

m`−16n<m`
b(n) 6 α2ρ̂

`, (36)

α3ρ̌
` 6 min

m`−16n<m`
b(n) 6 α4ρ̌

`, (37)

where ρ̂ = ρ̂(A0, . . . , Am−1), ρ̌ = ρ̌(A0, . . . , Am−1), and the operators A0, . . . , Am−1

are defined for fixed parameters (m, d) by formulae (31) and (33).
Moreover, the quantities ρ̂ and ρ̌ satisfy the inequalities⌊

d

m

⌋
6 ρ̌ 6 d

m
6 ρ̂ 6

⌈
d

m

⌉
. (38)

Before proving the theorem we shall state several consequences of it.
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Corollary 1. Inequalities (25) and (26) hold for each ` > 1 + logm d.

Corollary 2. For each pair (m, d), where 2 6 m 6 d − 1, the following relations
hold:

lim
n→∞

log b(n)

log n
= λ2 = logm ρ̂(A0, . . . , Am−1),

lim
n→∞

log b(n)

log n
= λ1 = logm ρ̌(A0, . . . , Am−1);

α1 6 lim
n→∞

b(n)n−λ2 6 α2m,

α3 6 lim
n→∞

b(n)n−λ1 6 α4m.

Corollary 3. For each n > md,

α3n
λ1 6 b(n) 6 α2mnλ2 .

Remark 5. In the proof of Theorem 1 we shall obtain estimates of the quantities
α1, α2, α3, and α4.

Proof of Theorem 1. Let K = {(x1, . . . , xs) ∈ Rs : xi > 0, i = 1, . . . , s} be the
positive coordinate sector in Rs. Since all entries of the matrices of A0, . . . , Am−1

are non-negative, K is an invariant cone of this collection. The constant µ = µ(K)
is equal in this case to cos(ϕ/2) =

√
2/2 (Lemma 1). As we shall see below, the

existence of the second invariant cone depends on the relation between m and d.
For some pairs (m, d) there exists an inner invariant cone K′ and we can apply
Proposition 2. For other pairs there is no inner cone, and we shall apply in that
case the results of § 3.

We shall say that x1 > x2 for a pair of vectors x1, x2 ∈ Rs if x1 − x2 ∈ K.
In a similar way, for operators B1 and B2 in Rs we shall say that B1 > B2 if
(B1 − B2)K ⊂ K (that is, the entries of the matrix of B1 − B2 are non-negative).
It is easy to see that if the entries of B1, B2 and the components of x1, x2 are
non-negative, then

x1 > x2, B1 > B2 ⇒ B1x1 > B2x2. (39)

This means, in particular, that the common spectral radius and the lower spectral
radius are non-decreasing functions of matrices with non-negative coefficients.

We now proceed to the proof of Theorem 1. Assume first that the operators
A0, . . . , Am−1 have no inner invariant cone.

Case 1. d 6 2m− 1d 6 2m− 1d 6 2m− 1. In this case k= bd/mc= 1, therefore s= k+

⌈
k + r − 1

m− 1

⌉
= 2.

From (33) we deduce that Ar =

(
1 0
1 1

)
. Applying Lemma 8 to n` =

∑`−1
t=0 rm

t

we obtain v(n`) = A`rv(0) = (1, `)T . Hence b(n`) = 1 for each ` ∈ N, therefore

min
m`−16n<m`

b(n) = 1, ` ∈ N,

so that ρ̌ = 1, λ1 = 0, α3 = α4 = 1.
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We must now consider two subcases.

(a) m+ 2 6 d 6 2m− 1. Since r > 2, it follows that Ar−1 =

(
1 1
1 1

)
. Hence

Ar−1 > Ai for i = 0, . . . , m− 1. Lemma 8 and relation (39) show that

v(n) = At0 · · ·At`−1v(0) 6 A`r−1v(0) = (2`−1, 2`−1)T .

Thus,
max

m`−16n<m`
b(n) = 2`−1.

Hence ρ̂ = 2, α1 = α2 = 1
2
.

(b) d = m+ 1.

In this subcase

A0 =

(
1 1
0 1

)
, A1 =

(
1 0
1 1

)
.

The other matrices in our collection are smaller than A1. For if m > 3, then

Am−1 = · · · = A2 =

(
1 0
1 0

)
.

Hence for each positive integer ` and all (t0, . . . , t`−1) ∈ {0, . . . , m− 1}` we have

At0 · · ·At`−1 6 At̃0 · · ·At̃`−1
,

where t̃k = 0 if tk = 0, and t̃k = 1 otherwise. We obtain

max
m`−16n<m`

bm,m+1(n) = max
2`−16n<2`

b2,3(n).

We have thus reduced the case d = m + 1 to the case m = 2, d = 3 discussed by
Reznick [2]. He showed, in particular, that

max
2`−16n<2`

b2,3(n) = u`,

where {uj} is the Fibonacci sequence: u0 = u1 = 1, uj+1 = uj + uj−1. Using the
well-known formula

uj =

√
5

5

((√
5 + 1

2

)j+1

−
(

1−
√

5

2

)j+1)
we conclude that

max
m`−16n<m`

bm,m+1(n) = u` =
5 +
√

5

10

(√
5 + 1

2

)`
+ o(1) as `→∞.

Hence ρ̂ = (
√

5 + 1)/2. This completes the proof for d 6 2n − 1. Note now that
the collection of operators {A0, . . . , Am−1} does not have a pair of invariant cones
in this case because already the collection

{A0, Ar} =

{(
1 1
0 1

)
,

(
1 0
1 1

)}
has no such pair. We shall see in what follows that in all remaining cases (that is,
for d > 2m) there exists an invariant pair. In what follows we shall take for the
outer invariant cone K the positive coordinate sector in Rs. However, the inner
cone K′ will be different for different cases.
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Case 2. d = km, k > 2d = km, k > 2d = km, k > 2. Here r = 0, therefore the sum of entries in each row
of each matrix A0, . . . , Am−1 is k, that is, the matrices k−1A0, . . . , k

−1Am−1 are
stochastic with respect to the rows. Hence ρ̂ = ρ̌ = k, so that for d = km all the
inequalities (38) become equalities.

For arbitrary β > 1 we consider now the cone

Kβ =
{

(x1, . . . , xs) ∈ K : max
i=1,...,s

xi 6 β · min
i=1,...,s

xi
}
.

It is an invariant cone of each matrix that is stochastic with respect to the rows.
Hence the operators {A0, . . . , Am−1} have in the present case a continuum of invari-
ant pairs {(K,Kβ), β ∈ (1,+∞)}. For the constant γ = γ(K,Kβ) (see § 4) we
obtain

γ(K,Kβ) = inf
x∈Kβ\{0}

h(x)

‖x‖ = inf
x∈Kβ\{0}

min
i=1,...,s

xi
‖x‖ >

1

β
√
s
. (40)

(Recall that the norm in Rs is Euclidean.)
Before estimating the quantities α1, . . . , α4 we shall prove the existence of invari-

ant pairs in the remaining cases.

Case 3. d > 2m+ 1, r 6= 0, m > 3d > 2m+ 1, r 6= 0, m > 3d > 2m+ 1, r 6= 0, m > 3. In this case Kβ is an invariant cone for each
β > 2. Recall that the rows in each matrix Aj contain sequences of either k or k+1
ones; we shall say that each row is either a k-row or a (k + 1)-row. We shall now
require the following auxiliary result:

In Case 3 each k-row of the matrix At has at least two ones in common (that is,
ones located in the same columns) with each (k + 1)-row of At.

For a proof we observe first of all that in Case 3 the inequality⌈
k + r − 1

m− 1

⌉
6 k − 1

holds for all k and r except for k = 2 and r = m− 1. This inequality shows that
s 6 2k − 1, so that each k-row and each (k + 1)-row have at least two ones in
common. In the remaining case (when k = 2 and r = m− 1) the proof is carried
out by direct verification.

We consider now an arbitrary vector x ∈ Kβ \{0}. We claim that y = Ajx ∈ Kβ .
Since x has positive components, we shall assume that mini=1,...,s xi = 1. Hence
maxi=1,...,s xi 6 β. Let yt and yq be the smallest and largest components (of the
vector y), respectively. Clearly, yt > k. If the qth row of Aj is a k-row, then
yq 6 βk, so that y ∈ Kβ. If on the other hand it is a (k + 1)-row, then it has at
least two ones in common with the row yt. We denote by i1 and i2 the indices of the
rows containing these ones. We have yq 6 xi1 + xi2 + β(k − 1). On the other hand
yt > xi1 + xi2 + k − 2. Hence βyt > yq , and therefore y ∈ Kβ . Thus, AjKβ ⊂ Kβ ,
as required.

Case 4. m = 2, d = 2k+ 1m = 2, d = 2k + 1m = 2, d = 2k + 1. This is the last and the most complicated case. The
point is that the cones Kβ are no longer invariant for any β. One must look for an
invariant cone of a more complex structure.
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Since m = 2, it follows that s = d − 1 = 2k. The collection A consists now of
two matrices:

(A0)ij =

{
1 if 1 6 2j − i 6 d,
0 otherwise,

(A1)ij =

{
1 if 0 6 2j − i 6 d− 1,

0 otherwise.
(41)

The matrix A0 contains k + 1 ones in each odd row and k ones in each even row;
A1 contains k + 1 ones in even rows and k ones in odd rows. We consider now the
following family of integer vectors:

V =
{

(x1, . . . , x2k) ∈ R2k : xi ∈ {1, 2, 3, 4}, i = 1, . . . , 2k
}
.

We remove from it the two vectors a = (4, . . . , 4, 1, . . ., 1) and b = (1, . . . , 1, 4, . . ., 4)
(both containing k ones and k fours) to obtain a new family V ′. We set

K′ =

{ N∑
i=1

µixi : µi > 0, xi ∈ V ′, i = 1, . . . , N ; N ∈ N
}
.

We now claim that K′ is an invariant cone of the collection {A0, A1}. We shall
show that A0K

′ ⊂ K′; the inclusion A1K
′ ⊂ K′ can be established in a similar

way.
Let x ∈ V ′ be an arbitrary vector. We must prove that y = A0x is a positive

linear combination of vectors in V ′. First of all, it is clear that k 6 yi 6 4(k + 1)
for each i = 1, . . . , 2k . If mini=1,...,2k yi > k + 1, then each component yi can
be represented as a sum of k + 1 integers from the set {1, 2, 3, 4}, so that y is
representable as the sum of k + 1 (not necessarily distinct) vectors in V . Consider
now another case when some components {yi} are equal to k. If

max
i=1,...,2k

yi 6 4k, (42)

then y is a sum of k vectors in V . We claim that inequality (42) holds in the case
mini=1,...,2k yi = k. First, let y2k = k; then the last k components of x are ones:
xk+1 = · · ·= x2k = 1. Since x ∈ V ′, it follows that x 6= a, so that at least one of the
coordinates x1, . . . , xk is less than 4. Each component yj is a sum of at most k+ 1
coordinates of x, one of which (namely, xk+1) is equal to 1, while another must be
less than 4. Hence yj 6 1 + 3 + 4(k − 1) = 4k.

On the other hand, if there exists j < 2k such that yj = k, then at least two
components of x are equal to 1. In fact it follows from (41) that in all rows of A0

but the last, their kth and (k + 1)th components are ones. Hence xk = xk+1 = 1
and therefore yi 6 1 + 1 + 4(k − 1) = 4k − 2 for each i. Hence y is a sum of k
vectors in V .

Thus, the image of each vector in V ′ is a sum of k or k + 1 vectors in V . It
remains to show that this sum can be chosen so as not to contain the ‘forbidden’
vectors a and b.

We start with the case of a sum of k vectors. Let x∈V ′ and y=A0x=v1 + · · ·+vk,
where vi ∈ V , i = 1, . . . , k. Clearly, yi ∈ [k, 4k] for all i = 1, . . . , 2k. We consider the
components yk and yk+1. We can assume without loss of generality that yk 6 yk+1.
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Now, if yk+1 6 3k, then each of the quantities yk, yk+1 is a sum of k integers from
the set {1, 2, 3}. Hence we can choose v1, . . . , vk such that the kth and the (k+1)th
components of these vectors belong to the set {1, 2, 3}. Consequently, none of the
vectors vi is equal to a or b.

The case yk > 2k can be discussed in a similar way. Namely, we can show that
there exist vectors v1, . . . , vk ∈ V such that v1 + · · · + vk = y and the kth and
the (k + 1)th components of these vectors belong to the set {2, 3, 4}. Hence none
of these vectors is equal to a or b.

We consider now the remaining case of yk 6 2k − 1 and yk+1 > 3k + 1. We set
yk = k+ t1 and yk+1 = 4k− t2. Clearly, t1, t2 6 k− 1. As usual, we denote the jth
component of vi by (vi)j . In our case we can select the vectors v1, . . . , vk so that

(vi)k =

{
2, 1 6 i 6 t1,
1 otherwise,

(vi)k+1 =

{
3, k − t2 + 1 6 i 6 k,
4 otherwise.

If, in addition, t1 + t2 > k, then a, b /∈ {v1, . . . , vk} and the proof is complete. Let
us show that, indeed, we have t1 + t2 > k. Since two arbitrary consecutive rows
of A0 coincide in all but maybe one component, we have yk+1 − yk 6 4, so that
(4k − t2) − (k + t1) 6 4. Hence t1 + t2 > 3k − 4 > k because k > 2. We have thus
completed the analysis of the case of k vectors.

Assume now that y = A0x is a sum of k + 1 vectors in V : y = v1 + · · ·+ vk+1.
We must again remove the vectors a and b from this sum. Again, assume that
yk+1 > yk. The cases of yk > 2(k + 1) and yk+1 6 3(k + 1) can be considered in
the same way as the cases of yk > 2k and yk+1 6 3k, respectively. It remains to
discuss the last case, when yk 6 2(k + 1) − 1 and yk+1 > 3(k + 1) + 1. We set
yk = (k + 1) + t1 and yk+1 = 4(k + 1) − t2. Since t1, t2 6 k, we can assume that
the vectors v1, . . . , vk satisfy the following conditions:

(vi)k = 2 for i = 1, . . . , t1,

(vi)k+1 = 3 for i = (k + 1)− t2 + 1, . . . , k + 1.

Note now that t1 + t2 > k + 1, as follows from the inequality yk+1 − yk 6 4. One
then proceeds in a similar way to the previous case.

We have thus proved that K′ is an invariant cone of the collection {A0, A1}.
Note that V ′ ⊂ Kβ for β > 4, and therefore K′ ⊂ Kβ . Thus,

γ(K,K′) > γ(K,Kβ) > 1

β
√
s

=
1

4
√

2k
.

We can now complete the proof of Theorem 1 in cases 2, 3, and 4. We have
established that A0, . . . , Am−1 have an invariant pair (K,K′) if and only if d > 2m.
In addition, we have proved that γ(K,K′) > (β

√
s )−1, where β = 1 for r = 0,

β = 4 for (m, d) = (2, 2k + 1), and β = 2 otherwise. Thus, in all possible cases

γ > 1

4
√
s
. (43)
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We set u = (1, . . . , 1)T ∈ Rs. Applying Lemma 8 we obtain

b(n) =〈v(n), v(0)〉 = 〈At0 · · ·At`−1v(0), v(0)〉
6 〈At0 · · ·At`−1u, v(0)〉 6 ‖At0 · · ·At`−1u‖

(we use the Euclidean norm). Next, on the basis of Proposition 2 we obtain

min
m`−16n<m`

b(n) 6 min
m`−16n<m`

‖At0 · · ·At`−2u‖ 6
1

µγ
ρ̌`−1‖u‖ =

1

µγ
ρ̌`−1
√
s ,

max
m`−16n<m`

b(n) 6 max
m`−16n<m`

‖At0 · · ·At`−2u‖ 6
1

µγ
ρ̂`−1‖u‖ =

1

µγ
ρ̂`−1
√
s .

We have established the right-hand inequalities in (36) and (37). Moreover, we
have obtained the estimates

α2 6
√
s

µγρ̂
, α4 6

√
s

µγρ̌
. (44)

To prove the left-hand inequalities in (36) and (37) we observe that for each
n > s all components of v(n) are not smaller than 1. Hence if q = dlogm se, then
for all t0, . . . , tq ∈ {0, . . . , m− 1}q+1 we have

At0 · · ·Atqv(0) > u.

Since each integer n > md has at least q+1 digits in its (radix) representation with
base m, it follows that

b(n) = 〈v(n), v(0)〉 = 〈At0 · · ·At`−1v(0), v(0)〉 > 〈Πl−q−1u, v(0)〉 > γ‖Πl−q−1u‖,

where Πl−q−1 = At0 · · ·Atl−q−2 for l > q + 2 and Πl−q−1 is the identity operator
for l < q + 2. Thus, for arbitrary ` > 1 + logm d we have

min
m`−16n<m`

b(n) > γ min
m`−16n<m`

‖Πl−q−1u‖ > µγ2 ρ̌`−q−1
√
s ,

max
m`−16n<m`

b(n) > γ max
m`−16n<m`

‖Πl−q−1u‖ > µγ2 ρ̂`−q−1
√
s .

We have thus established the left-hand inequalities in (36) and (37). Moreover,

α3 >
µγ2
√
s

ρ̌q+1
, α1 >

µγ2
√
s

ρ̂ q+1
, (45)

where q = dlogm se.
We now discuss (38). For each j = 0, . . . , m−1 the matrix Aj contains k or k+1

ones in each row. Adding a single one in each k-row we obtain a matrixA+
j with k+1

ones in each row. On the other hand, removing a single one from each (k + 1)-row
we obtain a matrix A−j containing k ones in each row. Clearly, A−j 6 Aj 6 A+

j ,

and the matrices k−1A−j and (k + 1)−1A+
j are stochastic with respect to the rows.
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Since both the joint spectral radius and the lower spectral radius of a stochastic
matrix are equal to one, it follows that

ρ̂(A0, . . . , Am−1) 6 ρ̂(A+
0 , . . . , A

+
m−1) = k + 1 =

⌈
d

m

⌉
,

ρ̂(A0, . . . , Am−1) > ρ̂(A−0 , . . . , A
−
m−1) = k =

⌊
d

m

⌋
.

Next, the matrix B = d−1(A0 + · · ·+Am−1) is also stochastic with respect to the
rows. Since

ρ̌(A0, . . . , Am−1) 6 d

m
ρ(B) 6 ρ̂(A0, . . . , Am−1),

it follows that

ρ̌(A0, . . . , Am−1) 6 d

m
6 ρ̂(A0, . . . , Am−1).

We have thus proved (38), which completes the proof of Theorem 1.

Estimates of α1, α2, α3, α4α1, α2, α3, α4α1, α2, α3, α4. Using (43) and setting µ =
√

2/2 in (44) we obtain

α2 6
√
s

ρ̂µγ
6
√
s
√

2 4
√
s

ρ̂
=

4
√

2 s

ρ̂
,

α4 6
√
s

ρ̌µγ
6
√
s
√

2 4

ρ̌
=

4
√

2 s

ρ̌
.

Next, using the inequalities ρ̂ > d/m and ρ̌ > bd/mc we obtain

α2 6
4ms
√

2

d
, α4 6

4s
√

2

bd/mc , (46)

where s = k +

⌈
k + r − 1

m− 1

⌉
. We substitute (43) in (45) and set µ =

√
2/2:

α3 >
1√

2 16
√
s ρ̌q+1

, α1 >
1√

2 16
√
s ρ̂ q+1

.

Finally, substituting the inequalities ρ̌ 6 d/m, ρ̂ 6 dd/me, and setting q = dlogm se
we obtain

α3 >
1

16
√

2s

(
d

m

)−dlogm se−1

, (47)

α1 >
1

16
√

2s

⌈
d

m

⌉−dlogm se−1

. (48)
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§ 6. Growth exponents for m = 2m = 2m = 2 and d = 2k + 1d = 2k + 1d = 2k + 1

As pointed out in the introduction, Reznick [2] has calculated the growth expo-
nents λ1 and λ2 for m = 2 and d = 3 and posed the question of the values of
these exponents (in the case m = 2) for other odd values of d. We have solved this
problem ‘in principle’ by showing that λ1 = log2 ρ̌(A0, A1) and λ2 = log2 ρ̂(A0, A1).
The question of the calculation of ρ̂ and ρ̌ for each odd d > 5 now suggests itself.

Conjecture 1. For all pairs (2, 2k + 1), k ∈ N, the equalities

ρ̂(A0, A1) = max{ρ(A0),
√
ρ(A0A1) }, (49)

ρ̌(A0, A1) = min{ρ(A0),
√
ρ(A0A1) } (50)

hold (here ρ is the usual spectral radius).

Generally speaking, the problem of the calculation of the common spectral radius
and the lower spectral radius for an arbitrary collection of operators is extremely
complicated and the known algorithms are very slow (see, for instance, [9]–[11]). If
Conjecture 1 holds, then this problem (for our matrices A0 and A1) can be reduced
to an (asymmetric) eigenvalue problem for (2k×2k)-matrices. The values of ρ̂ and ρ̌
will in this case be zeros of polynomials of degree 2k, which in addition have integer
coefficients. In particular, this means that ρ̂(A0, A1) and ρ̌(A0, A1) are algebraic
numbers.

We do not know whether Conjecture 1 holds for all k > 2. We shall prove it for
some values of k.

Theorem 2. Equalities (49) and (50) hold for each pair (2, 2k+1) with 1 6 k 6 6.

Before the proof we make several observations. The case (m, d) = (2, 3) has in
fact been discussed in [2]. We must consider the cases (2, 5), (2, 7), (2, 9), (2, 11),
and (2, 13). First we shall formulate and prove Lemma 9 and Proposition 3, which
are possibly also of independent interest: they suggest a new approach to the
calculation of the joint spectral radius and the lower spectral radius in some special
cases. We shall apply these techniques to the operators A0, A1 for k = 2, . . . , 6. We
discuss each value of k separately, but use the same method. It is highly probable
that the same method can help to extend Theorem 2 to other values of k. However,
we have not managed to prove the theorem for all positive integers k (which would
indeed be a strong result).

We use in the proof the Krěın–Rutman theorem (see, for instance, [15]), which
states that for an arbitrary operator B with invariant cone K ⊂ Rs there exists a
vector v ∈ K such that Bv = ρ(B)v. We shall call it a maximum vector of B. An
operator can in general have several maximum vectors.

Lemma 9. Let B0, B1 be operators with invariant cone K ⊂ Rs.
(a) If there exist a maximum vector v0 ∈ intK of B0 and an invariant cone K̃

of B0, B1 such that K ⊂ K̃ and (B0 −B1)v0 ∈ K̃, then

ρ̂(B0, B1) = ρ(B0).
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(b) If there exist a maximum vector v1 ∈ intK of B1 and an invariant cone K̃

of B0, B1 such that K ⊂ K̃ and (B0 −B1)v1 ∈ K̃, then

ρ̌(B0, B1) = ρ(B1).

Proof. (a) We consider the set H0 = K̃∩(v0−K̃). Clearly,H0 is convex and 0 ∈ H0.

If H0 is also unbounded, then it contains a ray {ty, t > 0} with y ∈ K̃ \{0}. Hence

{ty, t > 0} ⊂ v0 − K̃, so that v0/t− y ∈ K̃ for all t > 0. Consequently, (−y) ∈ K̃,

which contradicts the non-degeneracy of K̃. Thus, H0 is a bounded set. Since
BiH0 ⊂ ρ(B0)H0 for i = 0, 1, the set{

ρ−`(B0) max
`
B(x), ` ∈ N

}
(51)

is bounded for each x ∈ H0. Note that H0 has non-empty interior since v0 ∈ intK.
Thus, we can assume without loss of generality that x ∈ intH0. Combining (51)
and Proposition 1(b) we obtain the inequality ρ(B0) > ρ̂(B0, B1). Finally, we can
apply (9) to prove that ρ(B0) = ρ̂(B0, B1).

(b) Note first that the set H1 = v1 +K̃ does not contain the origin, for otherwise

(−v1) ∈ K̃, which contradicts the non-degeneracy of K̃. Since BiH1 ⊂ ρ(B1)H1

for i = 0, 1, the set {
ρ−`(B1) min

`
B(x), ` ∈ N

}
is bounded below for each x ∈ H1. Hence ρ̌(B0, B1) > ρ(B1). Taking account
of (10) we now obtain the equality ρ̌(B0, B1) = ρ(B1), which completes the proof
of Lemma 9.

One consequence of Lemma 9 is the following Proposition 3 describing sufficient
conditions for the relations

ρ̂(B0, B1) = ρ(B0), ρ̌(B0, B1) = ρ(B1). (52)

Before stating it we recall some notation. For a cone K ⊂ Rs, a vector x ∈ Rs,
and an operator B the relations x > 0 (x > 0) and B > 0 (B > 0) mean that
x ∈ K (x ∈ intK) and BK ⊂K (B(K \ {0}) ⊂ intK), respectively. In particular,
if K = {(x1, . . . , xs) ∈ Rs, xi > 0, i = 1, . . . , s}, then the inequality x > 0 (x > 0)
means that x has non-negative (positive) components, B > 0 (B > 0) means that
the matrix of B has non-negative (positive) entries. Let Is be the identity operator
in Rs.

Proposition 3. Let K ⊂ Rs be a fixed cone and B0, B1 > 0 operators such that
each Bi has a maximum vector vi ∈ intK (i = 0, 1). Then each of the following
conditions is sufficient for relations (52):

(1) there exists r ∈ N such that

Bi1 · · ·Bir (B0 −B1)vi0 > 0

for all (i0, . . . , ir) ∈ {0, 1}r+1;
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(2) there exist non-degenerate operators R0 and R1 and positive integers r, q,
and N such that

(a) for i ∈ {0, 1} either Ri = Is or Ri > 0 and in addition R−1
i B`iRi > 0

for ` = q, . . . , 2q− 1;
(b) Bi1 · · ·Bir (B0 − B1)BNi0Ri0 > 0 for all (i0, . . . , ir) ∈ {0, 1}r+1;

(3) there exist a non-degenerate operator P > 0 and a positive integer N such
that

PBiP
−1 > 0, P (B0 −B1)BNi > 0 for i = 0, 1.

Proof. Part (1) is an immediate consequence of Lemma 9, where

K̃ =
⋂

(i1,...,ir)∈{0,1}r
(Bi1 · · ·Bir )−1K.

(2) If Ri = Is, then we have vi ∈ BNi K = BNi RK. Hence the inequality
Bi1 · · ·Bir (B0 − B1)BNi Ri > 0 means that Bi1 · · ·Bir (B0 −B1)vi > 0.

If Ri > 0 and R−1
i B`iRi > 0, ` = q, . . . , 2q − 1, then we consider the set

Ki = conv(BqiRiK, . . . , B
2q−1
i RiK). Note first that Ki ⊂ RiK. Since Ri > 0,

it follows that Ki is a subset of K. Moreover, BiKi ⊂ Ki. Now, using the
Krěın–Rutman theorem we conclude that Bi has a maximum vector ui ∈ Ki.
We can assume without loss of generality that vi = ui. It remains to observe that
vi ∈ BNi Ki ⊂ BNi RiK. Thus, in both cases we have

Bi1 · · ·Bir (B0 −B1)vi > 0.

We now use part (1) for the final step of the proof.
(3) Since the set P−1K, which contains K, is an invariant cone of B0 and B1,

we can apply Lemma 9 with K̃ = P−1K. The proof is complete.

Proof of Theorem 2. As usual, let {ei}2ki=1 = {(0, . . . , 0, 1, 0, . . . , 0)T} be the basis
vectors inR2k. For each (a1, . . . , a2k)

T ∈ R2k let [a1, . . . , a2k] be the (2k×2k)-matrix
whose ith row is (ai, . . . , ai), i = 1, . . . , 2k. Finally, let M be the matrix such that
Mej = e2k+1−j. It is easy to see that M2 = I2k.

Thus, we have two (2k × 2k)-matrices A0 and A1 defined by relations (41) and
having an invariant pair (K,K′) described in the proof of Theorem 1. Note that
A1 = MA0M . This shows, in particular, that ρ(A1) = ρ(A0). Moreover,√

ρ(A0A1) =
√
ρ(A0MA0M) = ρ(A0M) = ρ(MA0).

It is an immediate consequence of the definition of the joint spectral radius that

ρ̂(A0, A1) = ρ̂(A0,MA0M) = ρ̂(A0,MA0).

In a similar way ρ̌(A0, A1) = ρ̌(A0,MA0). In fact, for all k1, . . . , kn ∈ N we have

Ak1
0 A

k2
1 · · ·A

kn−1

1 Akn0 = Ak1
0 (MA0M)k2 · · · (MA0M)kn−1Akn0

= Ak1
0 (MA0)Ak2−1

0 (MA0) · · · (MA0)A
kn−1−1
0 (MA0)Akn−1

0 ,

Ak1
1 A

k2
0 · · ·A

kn−1

1 Akn0 = (MA0M)k1Ak2
0 · · · (MA0M)kn−1Akn0

= (MA0)Ak1−1
0 (MA0)Ak2−1

0 · · · (MA0)A
kn−1−1
0 (MA0)Akn−1

0 .
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Hence an arbitrary product of several factors equal to A0 or A1, with last factor A0,
is a product (with the same number of factors) of several copies of the operators
A0 and MA0. In a similar way one can prove that a product of several copies of A0

and A1, with last factor equal to A1, is a product (with the same number of factors)
of copies of A0, MA0, multiplied on the right by M . Hence we immediately obtain
the inequality ρ̂(A0, A1) 6 ρ̂(A0,MA0). In a similar way, ρ̂(A0, A1) > ρ̂(A0,MA0).

Thus, equalities (49) and (50) take the following form:

ρ̂(A0,MA0) = max{ρ(A0), ρ(MA0)},
ρ̌(A0,MA0) = min{ρ(A0), ρ(MA0)}.

By the construction of K′ (see the proof of Theorem 1(4)), MK′ = K′ and
MK = K. Hence (K,K′) is an invariant pair also for the collection {A0,MA0}. It
is now easy to show that detA0 = (−1)k, so that the operators A0 and MA0 are
non-degenerate. We now want to use Proposition 3 with {B0, B1} = {A0,MA0}.
However, none of its assumptions holds for this collection of operators and the
cone K. This nuisance can be overcome by the passage to another basis in R2k.
The transformation matrix T will be defined as follows: the jth row of T is

(ej+k − ej)T , for 1 6 j 6 k,
(ek)T , for j = k + 1,

(e2k−j+1 − e3k−j+2)T , for k + 2 6 j 6 2k.

The inverse matrix T−1 has the following form:

for i 6 k (T−1)ij =

{
1, i+ 1 6 j 6 2k − i+ 1,

0 otherwise,

for i > k + 1 (T−1)ij =

{
1, i− k 6 j 6 3k − i+ 1,

0 otherwise.

We set F = T−1A0T and G = T−1MA0T . The reader can easily find the explicit
form of F and G, and we are content with the fact that each matrix consists
of zeros, ones, and twos. This shows, in particular, that the positive coordinate
sector K is an invariant cone of F and G. Note finally that the cone T−1K′

is embedded in K (because T−1 is a non-degenerate matrix with non-negative
entries) and is also an invariant cone of F and G. Thus, the collection {F,G}
has an invariant pair (K, T−1K′). By the Krěın–Rutman theorem the cone T−1K′

contains maximum vectors of F and G. We can now apply Proposition 3. The
easiest way would be to use its part (3): one merely has to produce a suitable
matrix P . This is not always possible, however. We can show that if ρ(F ) > ρ(G),
then the assumptions of part (3) do not hold. In that case we shall use part (2). To
this end it suffices to find appropriate matrices R0, R1 and numbers r, q, and N .
We are not going to write down all the matrix products for reasons of space. All
our calculations are precise (because the matrices have integer entries) and can be
easily verified, for instance, on a computer. For d = 5 we present the results of all
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our calculations, and in the other cases we merely write down the most important
matrices.

d = 5. In this case we have the two matrices

A0 =


1 1 1 0
0 1 1 0
0 1 1 1
0 0 1 1

 , MA0 =


0 0 1 1
0 1 1 1
0 1 1 0
1 1 1 0

 .

We can now find the transformation matrix T and its inverse T−1:

T =


−1 0 1 0
0 −1 0 1
0 1 0 0
1 0 0 −1

 , T−1 =


0 1 1 1
0 0 1 0
1 1 1 1
0 1 1 0

 .

Next, we calculate F and G:

F =


2 1 0 0
1 0 0 0
1 1 1 1
1 0 0 1

 , G =


0 0 1 2
0 0 0 1
1 1 1 1
1 0 0 1

 .

We can use Proposition 3(3) with B0 = G and B1 = F . The matrix P is as follows:

P =


1 0 0 0
2 1 0 0
0 0 1 2
0 0 0 1

 .

We verify the inequalities PBiP
−1 > 0, i = 0, 1, first. Indeed, we have

PB0P
−1 =


0 0 1 0
0 0 2 1
1 1 1 1
1 0 0 1

 , PB1P
−1 =


0 1 0 0
1 2 0 0
1 1 1 1
1 0 0 1

 .

For N = 7 we have

P (B0−B1)B7
0 =


74 20 35 107
76 22 18 65
0 0 0 0
0 0 0 0

 , P (B0−B1)B7
1 =


198 80 1 9
176 110 2 19
0 0 0 0
0 0 0 0

 .

Thus,

ρ̂(A0,MA0) = ρ̂(F,G) = ρ(G) = ρ(MA0),

ρ̌(A0,MA0) = ρ̌(F,G) = ρ(F ) = ρ(A0),

which completes the proof of Theorem 2 for d = 5.
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d = 7. We have

A0 =


1 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1

 , T =


−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
0 0 1 0 0 0
0 1 0 0 0 −1
1 0 0 0 −1 0

 ;

T−1 =


0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 1 0 0
1 1 1 1 1 1
0 1 1 1 1 0
0 0 1 1 0 0

 ,

F =


2 2 1 0 0 0
1 2 0 0 0 0
0 1 0 0 0 0
1 1 1 1 1 1
1 1 0 0 1 1
0 1 0 0 1 0

 , G =


0 0 0 1 2 2
0 0 0 0 2 1
0 0 0 0 1 0
1 1 1 1 1 1
1 1 0 0 1 1
0 1 0 0 1 0

 .

We can apply Proposition 3(2) with B0 = F , B1 = G, R0 = [13, 8, 2, 16, 11, 5]+3I6,
R1 = I6, r = 3, q = 2, N = 10. Recall that I2k is the identity (2k× 2k)-matrix and
[a1, . . . , a2k] is the (2k × 2k)-matrix with ith row (ai, . . . , ai), i = 1, . . . , 2k. After
the verification of the following 18 inequalities:

R−1
0 B2

0R0 > 0, R−1
0 B3

0R0 > 0,

Bi1Bi2Bi3(B0 − B1)B10
i0 Ri0 > 0, (i0, . . . , i3) ∈ {0, 1}4,

we obtain

ρ̂(A0,MA0) = ρ̂(F,G) = ρ(F ) = ρ(A0),

ρ̌(A0,MA0) = ρ̌(F,G) = ρ(G) = ρ(MA0),

which completes the proof for d = 7.

d = 9. We apply Proposition 3(3) to the matrices B0 = G, B1 = F , and

P =



2 5 4 0 0 0 0 0
1 2 2 0 0 0 0 0
2 6 5 0 0 0 0 0
4 10 8 1 0 0 0 0
0 0 0 0 1 8 10 4
0 0 0 0 0 5 6 2
0 0 0 0 0 2 2 1
0 0 0 0 0 4 5 2


.
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We have

PB0P
−1 =



0 0 0 0 2 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 4 0 0 1
1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1
1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 1


, PB1P

−1 =



0 1 0 2 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 2 0 0 0 0
1 0 0 4 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1
1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1


.

We now set N = 13 and verify the inequalities

P (B0 −B1)B13
0 > 0,

P (B0 −B1)B13
1 > 0.

Hence

ρ̂(A0,MA0) = ρ̂(F,G) = ρ(G) = ρ(MA0),

ρ̌(A0,MA0) = ρ̌(F,G) = ρ(F ) = ρ(A0).

d = 11. We apply Proposition 3(2) to the matrices B0 = F , B1 = G, R1 = I10,
and R0 = [36, 29, 20, 12, 3, 41, 33, 24, 16, 8]+ 5I10 and the integers r = 3, q = 4, and
N = 12.

On verifying the four inequalities

R−1
0 B`0R0 > 0, ` = 4, 5, 6, 7,

and the 16 inequalities

Bi1Bi2Bi3(B0 − B1)B12
1 > 0, Bi1Bi2Bi3(B0 − B1)B12

0 R0 > 0,

(i1, i2, i3) ∈ {0, 1}3,

we obtain

ρ̂(A0,MA0) = ρ̂(F,G) = ρ(F ) = ρ(A0),

ρ̌(A0,MA0) = ρ̌(F,G) = ρ(G) = ρ(MA0).

d = 13. We apply Proposition 3(2) to the matrices B0 = F , B1 = G, R1 = I12,
and R0 = [15, 12, 9, 6, 4, 1, 16, 13, 11, 8, 5, 2] + 7I12 and the integers r = 3, q = 4,
and N = 16.

On verifying the four inequalities

R−1
0 B`0R0 > 0, ` = 4, 5, 6, 7,

and the 16 inequalities

Bi1Bi2Bi3(B0 − B1)B16
1 > 0, Bi1Bi2Bi3(B0 − B1)B16

0 R0 > 0,
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where (i1, i2, i3) ∈ {0, 1}3, we obtain

ρ̂(A0,MA0) = ρ̂(F,G) = ρ(F ) = ρ(A0),

ρ̌(A0,MA0) = ρ̌(F,G) = ρ(G) = ρ(MA0).

The proof of Theorem 2 is complete.
We can now find the values of ρ̂(A0, A1) and ρ̌(A0, A1) for odd d 6 13.

d = 3.

ρ̂(A0, A1) =
√
ρ(A0A1) =

√
5 + 1

2
= 1.61803 . . .,

ρ̌(A0, A1) = ρ(A0) = 1 (see [2]).

d = 5.

ρ̂(A0, A1) =
√
ρ(A0A1) = root(z4 − 2z3 − 2z2 + 2z − 1) = 2.53861 . . . ,

ρ̌(A0, A1) = ρ(A0) =
√

2 + 1 = 2.41421 . . . .

(Here root(p(z)) is the largest (in absolute value) zero of the polynomial p(z). We
use this notation only for polynomials with one such zero.)

d = 7.

ρ̂(A0, A1) = ρ(A0) =
1

6
(332 + 12

√
321)1/3 +

20

3(332 + 12
√

321 )1/3
+

4

3

= 3.51154 . . .,

ρ̌(A0, A1) =
√
ρ(A0A1) = root(z5 − z4 − 7z3 − 5z2 − 3z − 1) = 3.49189 . . . .

d = 9.

ρ̂(A0, A1) =
√
ρ(A0A1) = root(z8 − 3z7 − 9z6 + 9z5 + 5z4 − z3 − z2 − z + 1)

= 4.50309 . . .,

ρ̂(A0, A1) = ρ(A0) =
1

6
(908 + 12

√
993 )1/3 +

44

3(908 + 12
√

993)1/3
+

4

3

= 4.49449 . . . .

d = 11.

ρ̂(A0, A1) = ρ(A0) = root(z4 − 5z3 − 3z2 + z + 1) = 5.50589 . . . ,

ρ̌(A0, A1) =
√
ρ(A0A1) = root(z10 − 4z9 − 12z8 + 20z7 + 42z6 − 1) = 5.49704 . . . .

d = 13.

ρ̂(A0, A1) = ρ(A0) = root(z6 − 8z5 + 10z4 − 2z3 + 2z2 − 1) = 6.50216 . . .,

ρ̌(A0, A1) =
√
ρ(A0A1)

= root(z12 − 4z11 − 20z10 + 20z9 + 28z8 + 4z7 + 8z6 + 4z4 + 4z3 − 1)

= 6.49894 . . . .
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Theorem 2 enables us to find explicit sequences of integers n delivering the upper
limit λ2 and the lower limit λ1 in (3). Consider the sequences xr = 4r and
yr = (4r+1 − 1)/3. By Lemma 8 we obtain

v(xr) = A2r
0 A1v(0), v(yr) = (A1A0)rA1v(0),

where v(n) =
(
b2,d(n), . . . , b2,d(n− 2k + 1)

)T
. Hence

lim
r→∞

log2 b2,d(xr)

log2 xr
= lim
r→∞

log2 ‖A2r
0 A1‖

1
2r+1 = log2 ρ(A0),

lim
r→∞

log2 b2,d(yr)

log2 yr
= lim
r→∞

log2 ‖(A1A0)rA1‖
1

2r+1 = log2

√
ρ(A0A1) .

We thus arrive at the following result.

Corollary 4. For k = 1, 2, 4 the upper limit λ2 and the lower limit λ1 are attained
at the sequences {yn} and {xn}, respectively. For k = 3, 5, 6 the limits λ2 and λ1

are attained at the sequences {xn} and {yn}, respectively.

The author is indebted to Prof. S. V. Konyagin from the Moscow State University
for his constant attention to this work. The main results of this paper were obtained
in 1998, while on a visit at the Institute for Advanced Study, Princeton, USA. The
author appreciates the hospitality of the Institute and all kinds of assistance in his
work that he received there.
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