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For an arbitrary integer d ≥ 2 , the binary partition function b(k) = b(d, k) is defined on the
set on nonnegative integers k as the total number of different binary expansions

k =
∞∑

j=0

dj2j ,

where the “digits” dj take values from the set 0, . . . , d − 1 . For d = ∞ , the quantity b(∞, k)
is the number of such expansions with arbitrary nonnegative integer digits. Leonard Euler in [1]
studied the partition function b(∞, k) in connection with certain power series. The asymptotic
behavior of b(∞, k) as k → ∞ was studied in various interpretations by K. Mahler, N. G. de
Bruijn, D. E. Knuth, B. Reznick, and others (see [2] for numerous references). The first results
for finite d were obtained by A. Tanturri in 1918 (see [3] and the two references in that work).
Clearly, for d = 2, we have b(k) ≡ 1 ; for d ≥ 3 , such a binary expansion is not necessarily unique,
and the following problem arises: characterize the asymptotic behavior of the function b(k) as
k → ∞ . B. Reznick in [2] showed that in the case d = 2r+1 , where r ≥ 0 is an integer, one has
b(k) = Crk

r + o(kr) as k → ∞ . Here Cr is an effective constant. It was noted in [2] that this
asymptotics can also be derived from results of A. Tanturri. For other even d = 2n , as was shown
in [2], one has

C1
nk

log2 n ≤ b(k) ≤ C2
nk

log2 n ,

where C1
n , C

2
n are positive constants. Denote

ν1 = lim inf
k→∞

k− log2 nb(k), ν2 = lim sup
k→∞

k− log2 nb(k).

For any n , both ν1 and ν2 are positive and finite. If n is an integer power of two, then ν1 = ν2 .
So, in this case, b(k) ∼ cklog2 n as k → ∞ . However, for a generic n , this is not always the case.
In [2], B. Reznick showed (referring also to an earlier work of L. Carlitz [4]) that for d = 6, n = 3
we have ν1 �= ν2 . The question about the other n was formulated as an open problem. Does
the property ν1 = ν2 hold only for the numbers n that are integer powers of 2? The following
theorem gives the answer.

Theorem 1. If ν1 = ν2 , then n = 2r for some integer r ≥ 0 .

In the proof of this theorem, we express ν1 and ν2 in terms of a special continuous function
and show how to compute it approximately for any n (Proposition 2 and Remark 1).
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For odd values of d , the asymptotic behavior of b(k) is more complicated; it was studied in [2]
and [5]. Denote

p1 = lim inf
k→∞

log b(k)
log k

, p2 = lim sup
k→∞

log b(k)
log k

.

If d is even, then we always have p1 = p2 , but for odd d this is not always the case. Already for
d = 3 we have p1 < p2 . Reznick in [2] computed these parameters explicitly for d = 3. In [5],
they were computed for d = 5, 7, 9, 11 and 13 . In all these cases, we have p1 < p2 . Is this true
for all odd d? In [2], it was shown that p1 ≤ log2(d/2) ≤ p2 and, moreover,

lim sup
k→∞

k− log2(d/2)b(k) = ∞.

In [5], it was proved that p1 = log2 ρ̌ and p2 = log2 ρ̂ , where

ρ̌ = lim
s→∞ min

d1 ,...,ds∈{0,1}
‖Td1 · · ·Tds‖1/s and ρ̂ = lim

s→∞ max
d1 ,...,ds∈{0,1}

‖Td1 · · ·Tds‖1/s

are the so-called lower spectral radius and the joint spectral radius of the operators T0 , T1 . These
operators act in R

d−1 and are defined by their (d− 1)× (d− 1) matrices as follows: (Tr)ij = 1 if
1 − r ≤ 2j − i ≤ d − r , and (Tr)ij = 0 otherwise (r = 0, 1). In [5], the following conjecture was
stated (it is still unproved).

Conjecture 1. If d is an odd integer, then

ρ̌ = min
{
ρ(T0),

√
ρ(T0T1)

}
and ρ̂ = max

{
ρ(T0),

√
ρ(T0T1)

}
,

where ρ denotes the (usual) spectral radius, i.e., the largest modulus of the eigenvalues.

In [5], this conjecture was proved for d = 3, 5, . . . , 13 , which made it possible to compute
explicitly the growth exponents p1 , p2 for these values of d . Note than none of the results above
(even if we assume Conjecture 1 to hold) implies that p1 < p2 . In this paper, however, we establish
the following.

Theorem 2. For any odd d , p1 < log2(d/2) < p2 .

Let us start the proof of Theorems 1 and 2 by making some observations. Set b(k) = 0 for all
integers k < 0 . It can easily be checked that for every k ∈ Z we have the following recurrent
relations:

b(2k) =
n−1∑
j=0

b(k − j), b(2k + 1) =
n−1∑
j=0

b(k − j). (1)

Denote ck = 2/d = 1/n , k = 0, . . . , 2n − 1 , and ck = 0 for all other k . Consider the so-called
subdivision operator Γ, which acts on the space of bounded sequences �∞ by the formula

(Γg)k =
∑

i

ck−2igi ,

where g = (gi)i∈Z ∈ �∞ . Now, take the initial sequence g0 = 1, gi = 0, i �= 0. For every j ≥ 0
we have

(Γjg)k =
(2
d

)j

b(k) for all k ≤ 2j − 1. (2)

This is easily shown by induction using (1). Now, we refer to the general theory of subdivision
schemes (see, for instance, [6]). A subdivision scheme with positive coefficients always converges,
provided ∑

k

c2k =
∑

k

c2k+1 = 1.
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This means that ‖ϕ(2−j · ) − Γjg‖∞ → 0 as j → ∞ , where ‖ · ‖∞ is the uniform norm of the
space �∞ , ϕ is a unique continuous compactly supported solution of the refinement equation

ϕ
(x
2

)
=

d−1∑
k=0

ckϕ(x− k) (3)

such that
∫
ϕdt = 1 (in our case all ck = 1/n for all k). Let us remark that suppϕ ⊂ [0, d − 1]

(see [6]). Thus,
δj = max

k≤2j−1
|n−jb(k)− ϕ(2−jk)| → 0 as j → ∞.

If we denote ψ(x) = x− log2 nϕ(x) , then we have the following assertion.

Proposition 1. For every j ≥ 0 and k ≤ 2j − 1 , the following inequality holds:

∣∣k− log2 nb(k)− ψ(2−jk)
∣∣ ≤ (2−jk)δj , (4)

where δj → 0 as j → ∞ .

Remark 1. For the case d = 6, n = 3, it was announced in [2] (without proof) that there exists
a continuous function ψ possessing property (4). Now, we see that such a function does exist
for every n and it is ψ(x) = x− log2 nϕ(x) , where ϕ is the continuous solution of the refinement
equation (3) with ck = 2/d . This solution can be found explicitly at all dyadic rational points
x = k/2j (see [7]). Therefore, the limit

lim
j→∞

(2jx)− log2 nb(2jx)

is also explicitly computed. Indeed, substituting x = 2−jk in (4), we see that this limit is equal
to ψ(x) . Note also that for the rate of convergence of the subdivision scheme we have

δj ≤ ‖ϕ(2−j · )− Γjg‖∞ ≤
(
d− 1
d

)j

(see [6]), therefore, we even know the rate of convergence of this limit.

Proposition 2. Let d ≥ 2 be an even integer, b(k) = b(d, k) be the corresponding partition
function. Then, for any integer s ≥ 1 ,

ν1 = min
x∈[2−s ,21−s]

ψ(x), ν2 = max
x∈[2−s ,21−s]

ψ(x).

Proof. Denote M(s, j) = {k/2j , 2j−s ≤ k ≤ 2j−s+1} . Since ϕ is continuous, it follows that ψ
is uniformly continuous on the segment [2−s , 21−s] . Therefore,

min
x∈[2−s ,21−s]

ψ(x) = lim
j→+∞

min
x∈M(s,j)

ψ(x).

By Proposition 1, the quantity
min

x∈M(s,j)
ψ(x)

is equivalent to
min

2j−s≤k≤2j−s+1
k− log2 nb(k)
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as j → ∞ . Clearly,

lim
j→∞

min
2j−s≤k≤2j−s+1

k− log2 nb(k) = lim inf
k→∞

k− log2 nb(k).

Thus,
inf

x∈[2−s ,21−s]
ψ(x) = lim inf

k→∞
k− log2 nb(k) = ν1.

The same holds for ν2 with inf replaced by sup. The proof is complete. �

Thus, we have found expressions for ν1 and ν2 . These formulas make it possible to compute
both ν1 and ν2 with arbitrary prescribed accuracy. To do this, one needs to compute the function ϕ
approximately; this can be done, for instance, by the same subdivision schemes whose rate of
convergence is known (Remark 1).

Corollary 1. The following relations hold :

ν1 = inf
x∈(0,1)

ψ(x), ν2 = sup
x∈(0,1)

ψ(x).

Proof of Theorem 1. If ν1 = ν2 , then we see by Corollary 1 that on the interval (0, 1) we
have ϕ(x) ≡ Cxlog2 n , where C is a constant. This implies that ϕ is an analytic function on each
interval (k, k + 1) , k ∈ Z , Indeed, for k ≤ 0 this is proved. If this is true for all k ≤ N , then
using (3) we obtain

ϕ(x) = nϕ

(
x

2

)
−

2n−1∑
k=0

ϕ(x− k) ;

therefore, ϕ is analytic on x ∈ (N , N + 1) . In the same way, we can show that for any integer
s ≥ 1 both one-sided limits ϕ(s)(k+0) and ϕ(s)(k− 0) exist and are finite at all integer points k .
Indeed, the left limit ϕ(s)(k− 0) exists and finite for all k ≤ 0 (it is equal to zero). If it exists and
is finite for all k ≤ N − 1 , then for k = N we use the same equation, obtaining

ϕ(s)(N − 0)(x) = 2−snϕ(s)

(
N

2
− 0

)
−

2n−1∑
k=0

ϕ(s)(N − k − 0)

(note that N/2 is either noninteger (so ϕ is analytic at that point) or is an integer smaller
than N). Thus, the left limits exist and are finite at all integers. The right limits also exist since
the function ϕ is symmetric. If log2 n is not integer, then we reach a contradiction, because for
s > log2 n the limit ϕ(s)(+0) = (Cxlog2 n)(s)(+0) is infinite. The proof is complete. �

Proof of Theorem 2. Consider the refinement equation (3) again. It was shown in [6] that if all
the coefficients ck are nonnegative and

∑
k ck = 2, then it possesses a unique, up to normalization,

compactly supported solution ϕ in the space of distributions; this solution is a Borel probability
measure, i.e., there exists a probability measure µ on R such that (ϕ, f) =

∫
f dµ for any test

function f . This measure is supported on the segment [0, d− 1] and does not vanish identically
on any interval in this segment. In [8], it was proved that such a measure is always continuous and
is of pure type, i.e., either absolutely continuous (ϕ ∈ L1) or purely singular. Moreover, if µ is
absolutely continuous, then the polynomial

m(z) =
1
2

d−1∑
k=0

ckz
k
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either vanishes at the point z = −1 , or has a pair of symmetric roots, i.e., m(z) = m(−z) = 0
for some complex z �= 0. Now, for an odd d = 2n + 1, consider this refinement equation with
ck = 2/d , k = 0, . . . , d− 1 . We have

m(z) =
1
d

d−1∑
k=0

zk =
zd − 1
d(z − 1)

.

Since m(−1) = 1/d �= 0 and m does not have symmetric roots, it follows that µ is purely singular.
Let now Γ be the subdivision operator corresponding to this equation. Note that equality (2) holds
for this operator as well. This is proved in the same way as in the case of even d by using (1),
where the first sum is now taken from 0 to n , not to n− 1 . For any j , set

ϕj(x) =
∑
k∈Z

(Γjg)k χ(2jx− k),

where χ is the characteristic function of the segment [0, 1] . Then ϕj converges to ϕ in the sense
of distributions as j → ∞ , i.e., for any test function f we have

(ϕj , f) → (ϕ, f) =
∫
f dµ

(for the proof see [6]). Now, we need the following fact proved in [5]: for any odd d there exist
positive constants C1 , C2 such that C1k

p1 ≤ b(k) ≤ C2k
p2 for all k ≥ 1 . Using (2), we obtain

(Γjg)k =
(
2
d

)j

b(k) ;

and, therefore,

C1

(
2
d

)j

kp1 ≤ (Γjg)k ≤ C2

(
2
d

)j

kp2 ,

which for k ∈ [2j−1 , 2j) implies

C1
2
d
kp1−log2(d/2) ≤ (Γjg)k ≤ C2k

p2−log2(d/2).

If p1 − log2(d/2) ≥ 0 , then 2C1/d ≤ (Γjg)k for all k ∈ [2j−1 , 2j) . Hence, for every j , we have
ϕj(x) ≥ 2C1/d for all x ∈ [1/2, 1] . Therefore, for the limit function ϕ we also have ϕ ≥ 2C1/d
on the segment [1/2, 1] , which means that

µ ≥ 2C1

d
λ,

where λ is the Lebesgue measure on [1/2, 1] . This contradicts the singularity of µ . Thus,

p1 − log2

(
d

2

)
< 0.

Now, assuming that

p2 − log2

(
d

2

)
≤ 0,

we obtain (Γjg)k ≤ C2 for all k ∈ [2j−1 , 2j) , and so ϕ ≤ C2 , which means µ ≤ C2λ on the segment
[1/2, 1] . Since µ is not identically zero on this segment, this again contradicts the singularity of µ .
Thus, p2 > log2(d/2) , which completes the proof. �
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