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For a finite set A of positive integers, we study the partition function pA(n). This function
enumerates the partitions of the positive integer n into parts in A. We give simple proofs
of some known and unknown identities and congruences for pA(n). For n in a special
residue class, pA(n) is a polynomial in n. We examine these polynomials for linear
factors, and the results are applied to a restricted m-ary partition function. We extend
the domain of pA and prove a reciprocity formula with supplement. In closing we consider
an asymptotic formula for pA(n) and its refinement.

Keywords: Partitions; congruences; linear recurrence; reciprocity; asymptotics.

Mathematics Subject Classification 2000: 05A17, 11P81, 11P83

1. Introduction

Let A be a non-empty set of natural numbers. An (unordered) partition of a natural
number n with parts in A is a sequence p1, p2, . . . , pr of, not necessarily distinct,
elements pi in A, such that

n = p1 + p2 + · · · + pr. (1.1)

The order of the parts pi does not matter. Therefore one often chooses to consider
partitions with decreasing (or increasing) parts only.

Let pA(n) denote the number of partitions (1.1) of n with pi ∈ A. Putting
pA(0) = 1, we can write the generating function F (x) =

∑∞
n=0 pA(n)xn as

F (x) =
∏
a∈A

1
1 − xa

.
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In particular, if A = N, the set of natural numbers, then pA(n) = p(n), the number
of unrestricted partitions of n, and the result

∞∑
n=0

p(n)xn =
∞∏

i=1

1
1 − xi

was published by Euler in 1748. There is an abundance of literature on the parti-
tion function p(n). Among the main issues studied are divisibility properties and
asymptotics.

In this paper we consider the case where the set A is finite. Let A consist of the
positive integers a0, a1, . . . , ak−1. Then pA(n) is equal to the number of solutions
(x0, x1, . . . , xk−1) in non-negative integers xi of the equation

n = a0x0 + a1x1 + · · · + ak−1xk−1. (1.2)

From this point of view, pA(n) is defined (and the results below hold) even if the
ai are not all distinct, that is, if A is a finite multiset of natural numbers. We
assume that the numbers in A are relatively prime. This does not imply any loss of
generality.

This paper is organized as follows. In Sec. 2 we show that pA(n) is a quasi-
polynomial in n of degree k − 1; that is, for n in a fixed residue class modulo a
certain number, pA(n) is a polynomial in n with coefficients in Q. In Sec. 3 we show
that these polynomials may have (several) integer zeros. In Sec. 4 we construct a
class of such polynomials with a non-integral rational zero, and we also construct
a class of polynomials with a double (integer) zero. In Sec. 5 we apply some of the
previous results to a special choice of the set A. In Sec. 6 we discuss some of the
previous material from another point of view, while we extend the domain of pA

to all of Z and prove a reciprocity formula with supplement. Finally, in Sec. 7 we
close with a simple arithmetic proof of a well-known asymptotic result for pA(n).
We also add a remark on the error term when using the approximation of pA(n)
coming from the pole x = 1 of F (x).

2. Finite A

If k = 1, then a0 = 1 and pA(n) = 1 for all n ≥ 0. Also if k = 2 the situation is
simple. Any non-negative integer can uniquely be written as a0a1n+a0r+a1s with
n ≥ −1, 0 ≤ r < a1, 0 ≤ s < a0. Then clearly,

pA(a0a1n + a0r + a1s) = n + 1.

Now to general k. Let α be a positive common multiple of a0, a1, . . . , ak−1. Then

F (x) =
k−1∏
i=0

1
1 − xai

=
f(x)

(1 − xα)k
, (2.1)
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where

f(x) =
k−1∏
i=0

1 − xα

1 − xai
=

k−1∏
i=0

αi−1∑
j=0

xjai , (2.2)

and where αi = α/ai. Thus there are non-negative integers fi such that

f(x) = f0 + f1x + · · · + fdx
d,

where d = αk − σ for σ = a0 + a1 + · · · + ak−1. Note that the polynomial f(x) is
reciprocal, that is,

xdf

(
1
x

)
= f(x),

so that fd−i = fi for i = 0, 1, . . . , d.
Recall the binomial series

1
(1 − y)k

=
∞∑

n=0

(−1)n

(−k

n

)
yn =

∞∑
n=0

(
n + k − 1

k − 1

)
yn.

Putting y = xα in this result, we have, by (2.1),

∞∑
n=0

pA(n)xn =
d∑

i=0

fix
i

∞∑
n=0

(
n + k − 1

k − 1

)
xαn.

Let r be an integer in the interval 0 ≤ r < α. We extract the terms where the
exponent of x is congruent to r mod α to get

∞∑
n=0

pA(αn + r)xαn+r =
∑
i≥0

fαi+rx
αi+r

∞∑
j=0

(
j + k − 1

k − 1

)
xαj ,

and where fj = 0 if j > d. We cancel xr and replace xα by x. This gives us
∞∑

n=0

pA(αn + r)xn =
∑
i≥0

fαi+r

∞∑
j=0

(
j + k − 1

k − 1

)
xi+j

=
∞∑

n=0

∑
i≥0

fαi+r

(
n − i + k − 1

k − 1

)
xn.

If fαi+r �= 0, then αi + r ≤ d, which holds if and only if i ≤ k − �(r + σ)/α�. Thus
we have (2.3) below. Since this result holds for all n ≥ 0, the coefficients fαi+r are
unique.

Theorem 2.1. There are unique integers fαi+r such that for all n ≥ 0,

pA(αn + r) =
k−κ∑
i=0

fαi+r

(
n − i + k − 1

k − 1

)
, (2.3)

where κ = �(r + σ)/α�.
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For each r = 0, 1, . . . , α − 1, we now have that pA(αn + r) is a polynomial of
degree at most k−1 in n with rational coefficients. It follows that there exist rational
numbers ci = ci(r) such that

pA(n) = ck−1n
k−1 + ck−2n

k−2 + · · · + c0. (2.4)

Since the coefficients depend upon the residue class of n mod α, this will usually
not be a polynomial in n. An expression of this type is called a quasi-polynomial
(of quasi-period α), cf. [16, p. 210]. The result (2.4) goes back at least to Bell [4],
who used partial fraction decomposition of the generating function to prove it.

3. Congruences

We define the rising factorial (the “Pochhammer symbol”) by

〈u〉i = u(u + 1) · · · (u + i − 1) for i ≥ 1.

We also put 〈u〉0 = 1. Here u is not necessarily an integer.
Integers denoted r and s will be connected by the relation

r + s + σ ≡ 0 (mod α), 0 ≤ r, s < α. (3.1)

Writing r + s + σ = ακ, we have

κ =
⌈

r + σ

α

⌉
=

⌈
s + σ

α

⌉
=

r + s + σ

α
.

Due to the symmetry in r and s, to each formula below containing r and s, we can
obtain a corresponding dual formula by interchanging r and s.

Multiplying (2.3) through by (k − 1)! and rearranging the factorials in the
“numerators” of the the binomial coefficients, we get

(k − 1)! pA(αn + r) = 〈n + 1〉κ−1

k−κ∑
i=0

fαi+rPi(n), (3.2)

where

Pi(n) = (−1)i〈−n〉i〈n + κ〉k−κ−i.

Let N ≥ 2 be an integer. By (3.2), we get

(k − 1)! pA (α ((k − 1)! N + n) + r) ≡ (k − 1)! pA(αn + r) (mod (k − 1)! N).

Cancelling (k − 1)! and writing n for αn + r, we have

pA ((k − 1)! αN + n) ≡ pA(n) (mod N).

Thus the sequence {pA(n)}n≥0 is periodic mod N with period (k − 1)! αN . Simi-
larly, if N is prime to (k − 1)!, then αN is a period. More generally, the sequence
{pA(n)}n≥0 is periodic mod N/gcd((k − 1)!, N) with period αN .

By (3.2), we have the following congruence:

Theorem 3.1. For all n ≥ 0,

(k − 1)! pA(αn + r) ≡ 0 (mod 〈n + 1〉κ−1).
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In particular, if max{0, α + 1 − σ} ≤ r < α, then

(k − 1)! pA(αn + r) ≡ 0 (mod n + 1) (3.3)

for all n ≥ 0. By replacing n by n − 1, this result may equivalently be given the
following form. Suppose that 0 < t ≤ min{α, σ − 1}. Then

(k − 1)! pA(αn − t) ≡ 0 (mod n) (3.4)

for all n ≥ 1.
Substituting (k − 1)! n for n in (3.3) and (3.4), we get

pA((k − 1)! αn + r) ≡ 0 (mod(k − 1)! n + 1)

if max{0, α + 1 − σ} ≤ r < α, and

pA((k − 1)! αn − t) ≡ 0 (mod n)

if 0 < t ≤ min{α, σ − 1}.
These congruences are not of “Ramanujan type”. But they do imply results with

a more traditional appearance. For example, if � is a prime, � ≥ k, then (3.4) gives

pA(�αn − t) ≡ 0 (mod �)

if 0 < t ≤ min{α, σ − 1}.
Let us present another result of this type. Set a0 = �q ≥ k, where � is a prime, q

a positive integer, and k ≡ � (mod 2). Put λ = lcm{a1, a2, . . . , ak−1} and α = λ�q.
Let u and v be connected by the relation

u + v + σ ≡ 0 (mod �q), 0 ≤ u, v < �q.

By using an idea of Kronholm [6], we will show that the sequence

{pA(�qn + u) + pA(�qn + v)}n≥0 (3.5)

is periodic mod � with period λ, and in particular,

pA(αn − �qt + u) + pA(αn − �qt + v) ≡ 0 (mod �) (3.6)

if 0 < t < (u + v + σ)/�q.
Let us look at the proof. Set

K(x) =
(1 − xλ)�q

(1 − xa1) · · · (1 − xak−1)
.

Putting γ = deg K(x), we have γ = (λ + 1)�q − σ. Thus we may write K(x) =
k0 + k1x + · · · + kγxγ ∈ Z[x]. Since � ≡ k (mod 2), we have

xγK(1/x) = −K(x),

that is, K(x) is anti-reciprocal. Equivalently, we have kγ−i = −ki for i = 0, 1, . . . , γ.
Let γ∗ = λ+1−(u+v+σ)/�q. Then 0 ≤ γ∗ ≤ λ. We have k�qi+u = −k�q(γ∗−i)+v.

Putting

Ku(x) =
∑
i≥0

k�qi+uxi =
γ∗∑
i=0

k�qi+uxi,
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it follows that

Ku(x) = −xγ∗
Kv (1/x) .

For

K∗(x) = Ku(x) + Kv(x)

we then have

xγ∗
K∗(1/x) = −K∗(x).

Setting x = 1, we see that K∗(1) = 0, so we may write

K∗(x)
1 − x

=
γ∗−1∑
i=0

gix
i ∈ Z[x],

where, as usual, an empty sum is taken as zero. Next,

∞∑
n=0

pA(n)xn =
K(x)

(1 − x�q )(1 − xλ)�q ≡ K(x)
(1 − x�q )(1 − xλ�q )

(mod �).

Comparing terms where the exponent of x is congruent u mod �q, cancelling xu,
and replacing x�q

by x, gives

∞∑
n=0

pA(�qn + u)xn ≡ Ku(x)
(1 − x)(1 − xλ)

(mod �).

It follows that
∞∑

n=0

(pA(�qn + u) + pA(�qn + v))xn

≡ K∗(x)
(1 − x)(1 − xλ)

≡
γ∗−1∑
i=0

gix
i 1
1 − xλ

(mod �).

For 0 ≤ w < λ, we now have

∞∑
n=0

(pA(�q(λn + w) + u) + pA(�q(λn + w) + v))xn ≡ gw

∞∑
n=0

xn (mod �),

that is,

pA(�q(λn + w) + u) + pA(�q(λn + w) + v) ≡ gw (mod �),

where gw = 0 if w ≥ γ∗. Now we see that the sequence (3.5) is periodic mod � with
period λ. Moreover, if γ∗ ≤ w < λ, then

pA(αn + �qw + u) + pA(αn + �qw + v) ≡ 0 (mod �).
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Replacing w by λ − t and writing n − 1 for n, we obtain (3.6) under the given
condition.

Finally, taking A = {1, 2, . . . , � }, � odd, we have σ = �(� + 1)/2, so we can set
u = v = 0. By (3.5) the sequence {2pA(�n)}n≥0, that is, the sequence {pA(�n)}n≥0,
is periodic mod � with period λ. Moreover, since � is odd, (3.6) gives

pA(αn − �t) ≡ 0 (mod �)

if 1 ≤ t ≤ (�− 1)/2. These results for A = {1, 2, . . . , � } with � an odd prime are the
results recently obtained by Kronholm [6].

4. More Linear Factors

Since the polynomial f(x) is reciprocal, we have

fα(k−κ−i)+r = fαi+s,

and by reversing the summation order in (2.3), we get

pA(αn + r) =
k−κ∑
i=0

fαi+s

(
n + κ + i − 1

k − 1

)
, (4.1)

while (3.2) becomes

(k − 1)! pA(αn + r) = 〈n + 1〉κ−1

k−κ∑
i=0

fαi+sQi(n), (4.2)

where

Qi(n) = Pk−κ−i(n) = (−1)k−κ−i〈−n〉k−κ−i〈n + κ〉i = (−1)k−κPi(−n − κ).

Various results can now be deduced by combining (3.2) with (4.2) and its dual.
Let us look at an example. Assuming k �≡ κ (mod 2), we have Pi(−κ/2) +

Qi(−κ/2) = 0. Suppose that r = s. By adding (3.2) and (4.2), we then see that
pA(αn + r) is divisible by (n + κ/2)〈n + 1〉κ−1 in Q[n]. If k is even, then κ is odd,
and the polynomial (k − 1)! pA(αn + r) in Z[n] is divisible by n + κ/2 in Q[n]. By
Gauss’ lemma for polynomials, (k−1)! pA(αn+ r) is then divisible by the primitive
polynomial 2n + κ in Z[n]. Thus we have

(k − 1)! pA(αn + r) ≡ 0 (mod (2n + κ)〈n + 1〉κ−1).

For k odd and κ even, we do not get the bonus factor 2, and we have

(k − 1)! pA(αn + r) ≡ 0 (mod (n + κ/2)〈n + 1〉κ−1). (4.3)

Notice, however, that this modulus contains the factor (n + κ/2)2.
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5. A Special Case: m-ary Partitions

Let m ≥ 2 be an integer. In this section we set

ai = mi for i = 0, 1, . . . , k − 1.

In this case, let us write pA(n) = bm,k(n). This restricted m-ary partition function
bm,k(n) enumerates the representations of n of the form

n = mε0 + mε1 + · · · + mεj ,

with εi ∈ Z and 0 ≤ ε0 ≤ ε1 ≤ · · · ≤ εj < k. We also have that bm,k(n) is equal to
the number of representations of n on the form

n = δ0 + δ1m + δ2m
2 + · · · ,

where δi ∈ Z and 0 ≤ δi < mk.
We set α = mk−1. For k ≥ 2, we then have, by Theorem 2.1,

bm,k(mk−1n + r) =
k−2∑
i=0

fmk−1i+r

(
n − i + k − 1

k − 1

)

for unique integers fj . For m = 2, this is essentially Theorem 3.6 in Reznick [12].
In a series of papers (see [13,14] and the references therein) it has been shown

that bm,k(n) possesses certain divisibility properties. From Sec. 3 we now get divis-
ibility properties of a rather different type. By (3.3), we have

(k − 1)! bm,k(n) ≡ 0 (mod 
n/mk−1� + 1). (5.1)

Moreover, by Theorem 3.1,

(k − 1)! bm,k(mk−1n + r) ≡ 0 (mod (n + 1)(n + 2)) (5.2)

if

mk−1 − mk−1 − 1
m − 1

< r < mk−1. (5.3)

If m = 2, then (5.1) and (5.2) hold (under the given conditions) with the factor
(k − 1)! on each of the left-hand sides replaced by ωk−1, the odd part of (k − 1)!.
We also have for odd k ≥ 3,

ωk−1b2,k(2k−1n) ≡ 0 (mod (n + 1)2), (5.4)

and for even k ≥ 4,

ωk−1b2,k(2k−1n) ≡ 0 (mod (n + 1)(2n + 1)(2n + 3)).

Proofs of these results are given in [15].
Let us here and now just prove that for odd k ≥ 3,

(k − 1)! b2,k(2k−1n) ≡ 0 (mod (n + 1)2), (5.5)
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which is a slightly weaker version of (5.4). If we take A = {1, 2, 22, . . . , 2k−1}, then α

is even while σ is odd, and the results of Sec. 4 are not directly applicable. However,
a bisection of the generating function of b2,k(n) gives

∞∑
n=0

b2,k(2n)xn =
1

1 − x

k−2∏
i=0

1
1 − x2i .

Now, take A as the multiset A = {1, 1, 2, 22, . . . , 2k−2}, and put α = 2k−2. Then
σ = 2k−1 = 2α, so we can take r = s = 0. We have κ = 2 and (5.5) follows
from (4.3).

6. Linear Recurrence

In this section we look at some of the previous material from another viewpoint. Set

Q(x) =
∏
a∈A

(1 − xa),

so that

F (x) =
∞∑

n=0

pA(n)xn =
1

Q(x)
.

Every zero γ of Q(x) satisfies γα = 1. The zero x = 1 has multiplicity k, and all
the other zeros of Q(x) have lower multiplicity. Hence, pA(n) is a quasi-polynomial
in n of quasi-period α and of degree k − 1; cf. [16, Proposition 4.4.1]. Thus (2.4)
holds and pA(αn + r) is a polynomial in n of degree k − 1. The abelian group of all
polynomials in n of degree at most k − 1 with complex coefficients and which map
non-negative integers to non-negative integers is free with basis{(

n − i + k − 1
k − 1

) ∣∣∣∣ i = 0, 1, . . . , k − 1
}

;

cf. [16, p. 209]. Thus there are unique integers fj such that (2.3) holds.
Next, expand Q(x) to get

Q(x) = q0 + q1x + q2x
2 + · · · + qσxσ,

where qj ∈ Z, q0 = 1, and qσ = (−1)k. Since

Q(x)
∞∑

n=0

pA(n)xn = 1,

we have

pA(n + σ) + q1pA(n + σ − 1) + · · · + qσpA(n) = 0 (6.1)

for all n ≥ 0. This is a homogeneous linear recurring relation of order σ.
For an integer N ≥ 2, we can consider (6.1) as a recurring relation in the

ring Z/NZ. Then there are only finitely many state vectors. Thus the sequence
{pA(n)}n≥0 is ultimately periodic modN , and since qσ is a unit in Z/NZ, the
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sequence is periodic. The state vectors also show that the least period is at most
Nσ−1. For more precise information about the period, we can go via the generating
function F (x) as we did in Sec. 3.

Now, back to Z. We extend the domain of pA from the non-negative integers to
all of Z by running (6.1) “backwards” and successively substituting n = −1,−2, . . . .

It follows that there is a unique extension of pA to all of Z such that (6.1) holds for
all n ∈ Z.

Let

G(x) =
∞∑

n=1

pA(−n)xn.

Then

G(x) = −F

(
1
x

)

as rational functions; cf. [16, Proposition 4.2.3]. By (2.1),

F

(
1
x

)
= (−1)kxσF (x),

so that

G(x) = (−1)k−1xσF (x).

Hence,
∞∑

n=1

pA(−n)xn = (−1)k−1
∞∑

n=σ

pA(n − σ)xn,

and, as (6.2) below extends from n ≥ σ to all of Z, we have our next theorem.

Theorem 6.1. For the extended partition function pA(n) we have the reciprocity
formula

pA(−n) = (−1)k−1pA(n − σ) for all n ∈ Z, (6.2)

with the supplement

pA(n) = 0 if −σ < n < 0. (6.3)

Now, (2.3) holds for all n ∈ Z. On the other hand, we can use (2.3) to extend
the domain of pA to all of Z. With n = αN + r, we have that (6.3) is equivalent to
pA(αN + r) having the factor 〈N +1〉κ−1 in Q[N ], which is true by (3.2). Moreover,
on the background of Theorem 2.1, the reciprocity formula (6.2) is equivalent to the
polynomial f(x) being reciprocal, which it is. So we could have deduced Theorem 6.1
directly from Theorem 2.1. That is, it is not difficult to see that (6.2) follows from
(2.3) and the dual of (4.1). The method used in the present section is, however,
quite transparent and we arrive directly at Theorem 6.1. Without this method it is
easy to overlook results like Theorem 6.1.
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It is well known that there is a smallest integer g = g(A) ≥ −1, the “Frobenius
number” of A, such that pA(n) ≥ 1 for all n ≥ g + 1. It follows by (6.2) that if
pA(n) = 0, then −σ−g ≤ n ≤ g. If a0 = 1, then pA(n) = 0 if and only if −σ < n < 0.
In particular, for the m-ary partition function considered in the previous section,
we have that the conditions i = 1, or i = 2 with (5.3), are necessary and sufficient
for the congruence

(k − 1)! bm,k(mk−1n + r) ≡ 0 (mod n + i)

to hold for some i ∈ Z. In Sec. 5 we only proved the sufficiency.
The reciprocity formula (6.2) tells us that if we write (2.4) as

pA(n) = ck−1(n + σ/2)k−1 + c′k−2(n + σ/2)k−2 + · · · ,
then, as long as the coefficients ck−1, c

′
k−2, c

′
k−3, . . . are independent of the residue

class of n mod α, every second coefficient c′k−2, c
′
k−4, . . . is equal to zero. We say

more about this in the next section.

7. Asymptotics

Since gcdA = 1, we have

pA(n) =
nk−1

(k − 1)!
∏

a∈A a
+ O(nk−2) as n → ∞. (7.1)

This is a well-known result proven by many authors. The usual proof is based on the
partial fraction decomposition of the generating function F (x); cf. Netto [9], and
Pólya–Szegő [11, Problem 27]. However, Nathanson [7; 8, Sec. 15.2] proves (7.1) by
induction on k.

We now give a simple arithmetic proof of (7.1). We have that pA(n)−pA(n−as)
is equal to the number of solutions of (1.2) with xi ≥ 0 and xs = 0. Let δ = gcd(A\
{as}). If δ � n, then pA(n)−pA(n−as) = 0. If δ|n, then pA(n)−pA(n−as) = pB(n/δ),
where B = {ai/δ | i �= s}. By (2.4) for pB(n/δ), we have

pA(n) − pA(n − as) = O(nk−2), (7.2)

and this result holds whether δ |n or not. Since gcdA = 1, there are integers ui

such that 1 = u0a0 + · · ·+uk−1ak−1. Thus, applying (7.2) |u0|+ · · ·+ |uk−1| times,
we get

pA(n) = pA(n − 1) + O(nk−2). (7.3)

If the coefficient ck−1 = ck−1(r) in (2.4) is dependent on r, there is a value of r,
0 < r < α, such that ck−1(r − 1) �= ck−1(r). For all n ≡ r (mod α) we then have,
by (2.4),

pA(n) = pA(n − 1) + cnk−1 + O(nk−2),
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where c = ck−1(r) − ck−1(r − 1) �= 0. This contradicts (7.3). Hence the coefficient
ck−1 in (2.4) does not depend on the residue class of n mod α.

Let us look at the coefficient of nk−1 in pA(αn + r). Replacing n by αn + r

in (2.4), we see that this coefficient is ck−1α
k−1. By (2.3), the same coefficient is∑

i fαi+r/(k − 1)!. Thus we have

ck−1α
k−1 =

1
(k − 1)!

k−κ∑
i=0

fαi+r.

Summing for r = 0, 1, . . . , α − 1, we obtain

ck−1α
k =

α−1∑
r=0

ck−1α
k−1 =

1
(k − 1)!

α−1∑
r=0

k−κ∑
i=0

fαi+r

=
1

(k − 1)!

d∑
j=0

fj =
1

(k − 1)!
f(1).

Recall that αi = α/ai. Using (2.2), we further get

ck−1α
k =

1
(k − 1)!

k−1∏
i=0

αi−1∑
j=0

1 =
1

(k − 1)!

k−1∏
i=0

αi =
αk

(k − 1)!
∏

a∈A a
.

Cancelling αk, we obtain

ck−1 =
1

(k − 1)!
∏

a∈A a
,

and, by (2.4), the proof of (7.1) is complete.
There is a more refined asymptotic result for pA(n). Several authors, including

[1], [3], and [5], have determined the “polynomial part” Φ(n) of pA(n), that is, the
approximation of pA(n) coming from the zero x = 1 of Q(x) (the pole x = 1 of F (x)).
Almkvist [1] does this in an elegant way. He first defines symmetric polynomials
σm(x0, . . . , xk−1) by

k−1∏
i=0

xit/2
sinh (xit/2)

=
∞∑

m=0

σm(x0, . . . , xk−1)tm.

Thus m! σm is a Bernoulli polynomial of higher order; see [10, Chap. 6]. Almkvist
[1, Theorem 2.3] shows that

Φ(n) =
1∏

a∈A a

k−1∑
i=0

σi(a0, . . . , ak−1)
(n + σ/2)k−1−i

(k − 1 − i)!
.

For an integer j in the interval 1 ≤ j ≤ k, there is no zero ξ �= 1 of Q(x) with mul-
tiplicity v, j ≤ v ≤ k, if and only if gcdA′ = 1 for all j-subsets A′ of A. In this case
we have that all the coefficients ck−1, ck−2, . . . , cj−1 in (2.4) are determined by the
zero x = 1 of Q(x); cf. [16, Proposition 4.4.1]. In particular, ck−1, ck−2, . . . , cj−1
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are independent of the residue class of n mod α. Thus we have the following
result:

Theorem 7.1. Let j be an integer in the interval 1 ≤ j ≤ k. Suppose that
gcdA′ = 1 for all j-subsets A′ of A. Then we have

pA(n) =
1∏

a∈A a

k−j∑
i=0

σi(a0, . . . , ak−1)
(n + σ/2)k−1−i

(k − 1 − i)!
+ O(nj−2)

as n → ∞.

We have σ0 = 1, and, in conformity with the reciprocity formula (6.2), σm = 0
if m is odd. Set si = ai

0 + ai
1 + · · · + ai

k−1. Then

σ2 = − s2

24
, σ4 =

5s2
2 + 2s4

5760
, σ6 = −35s3

2 + 42s2s4 + 16s6

2903040
.

Notice that, if the integers ai are relatively prime in pairs, then Theorem 7.1 gives
all the coefficients ci in (2.4), with the exception of c0 = c0(n).

In closing let us include a consequence of Theorem 7.1. Let pk(n) denote the
number of partitions of n into at most k parts. We know that pk(n) = pA(n) for
A = {1, 2, . . . , k}. Exact expressions for pk(n) for k ≤ 5 are given in [2]. If A∗ is a
subset of A with gcd A∗ > 1, then A∗ contains at most 
k/2� elements. Thus we
can set j = 
k/2�+ 1 in Theorem 7.1 to get

pk(n) =
1
k!

�(k−1)/2�∑
i=0

σi(1, 2, . . . , k)
(n + k(k + 1)/4)k−1−i

(k − 1 − i)!
+ O(n�k/2�−1)

as n → ∞.
The partition function pk(n) is a distinguished representative of the partition

functions enumerating the partitions of n into parts in a finite set. Most results for
pk(n) are valid for fixed k and variable n. An interesting but difficult problem is to
find results for pk(n) valid for fixed n and variable k. Nathanson [8, p. 474] asks for
an elementary proof of the unimodality of the sequence {pk(n − k)}1≤k≤n, proven
for n large by Szekeres [17,18] using difficult analytic techniques.

References

[1] G. Almkvist, Partitions with parts in a finite set and with parts outside a finite set,
Experiment. Math. 11 (2002) 449–456.

[2] G. E. Andrews and K. Eriksson, Integer Partitions (Cambridge University Press,
Cambridge, 2004).

[3] M. Beck, I. M. Gessel and T. Komatsu, The polynomial part of a restricted partition
function related to the Frobenius problem, Electronic J. Comb. 8 (2001), #N7, 1–5.

[4] E. T. Bell, Interpolated denumerants and Lambert series, Amer. J. Math. 65 (1943)
382–386.

[5] M. I. Israilov, Numbers of solutions of linear diophantine equations and their appli-
cations in the theory of invariant cubature formulas, Sibirsk. Math. Zh. 22(2) (1981)
121–136, 237. English translation: Sibirian Math. J. 22(2) (1981) 260–273.



October 4, 2006 10:30 WSPC/INSTRUCTION FILE 00064

468 Ø. J. Rødseth & J. A. Sellers

[6] B. Kronholm, On congruence properties of p(n, m), Proc. Amer. Math. Soc. 133
(2005) 2891–2895.

[7] M. B. Nathanson, Partitions with parts in a finite set, Proc. Amer. Math. Soc. 128
(2000) 1269–1273.

[8] M. B. Nathanson, Elementary Methods in Number Theory (Springer, New York,
2000).

[9] E. Netto, Lehrbuch der Combinatorik (Teubner, Leipzig, 1927).
[10] N. E. Nörlund, Vorlesungen über Differenzenrechnung (Chelsea, New York, 1954).
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