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1. We denote by tm(n) the number of partitions of the positive integer n into
non-decreasing parts which are positive or zero powers of a fixed integer m > 1 and
we call tm(n) 'the m-ary partition function'. Mahler(l) obtained an asymptotic
formula for tm(n), the first term of which is

Mahler's result was later improved by de Bruijn (2).
Following Churchhouse (3), we in particular denote the binary partition function

h(n) Dy Hn)- This function has been studied by Euler (4), Tanturri (5), (6), and recently
by Churchhouse (3). With m = 2, equations (1), (2) and (3) below are due to Euler.
Both Euler and Tanturri were concerned with deriving recurrence formulae for the
precise calculation of b(n), and Tanturri also found recurrence formulae involving the
more general function D(2P, n) which denotes the number of partitions of n into powers
of 2 of which 2P is the maximum. However, Churchhouse seems to have been the first
to discover that b(n) has certain congruential periodicities, and he conjectured the
property which we prove as our Theorem 1 below.

We also prove some further congruences and identities involving the m-ary partition
functions, mainly when m = p, a prime. The main results are given in the four
theorems below. Theorems 1 and 2 are concerned with the binary partition function
b(n). In Theorems 3 and 4 we give corresponding results in the case of the p-axy
partition function for p an odd prime.

In the following we use [a] to denote the integral part of a and I I to denote the

binomial coefficient with the usual conventions. An empty sum is taken as zero.

THEOREM 1. Let r > 0 and n = 1 (mod 2). Then

b(2r+2n) - b{2rn) = 2/*-> (mod 2^r'+1),

where fc{r) = [(3r + 4)/2].

THEOREM 2. Let r > 0, and put

B(n) = b(4:n)-b(n).

t The research described in this paper was done during the tenure of a research fellowship at
the Atlas Computer Laboratory.

29 P S P 68



448 OYSTEIN RODSETH

Then there exist integers ar{i) such that
r~x n /r + k\

B(2rn) = 2 2*l>ar(i)B(2'-in) + 2<-r+»<r+2)l2-z I ^ \b(n-k),

where v[i) = [(3i + l)/2].

Let tm(O) = 1, and put FJx) = 2 tm(n)xn (\x\ < 1).
71 = 0

Then Fm(x)= U(l-x™k)-\ (1)
k=0

and it follows that Fm(x) satisfies the functional equation

(1 — x)Fm(x) = Fm(xm), (2)

so that tm(n) =tm(n-l) + tm(^, (3)

where tm(n) is taken as zero if n is not a non-negative integer. If we further put
Tm(n) = tm(mn)-tm(n),

then TJn)=tJmn-r) (r = l,...,m), (4)

and £ 1
n=l V—X

The two final theorems involving tm(n) we now state in terms of Tm(n).

THEOREM 3. Let r > 0 and p be an odd prime. Then

where Apr=\±——) if

THEOREM 4. .Le£ r > 0 awd p be an odd prime. Then there exist integers cpT(i) such that

Tp{prn) = ' s p%
i l

t 7
= 0\ r—l

The method we use below in proving the above results goes back to Ramanujan, and
has been exploited since then by many writers, notably Watson (7). We use the
technique of Atkin and O'Brien (8).

This paper is divided into five sections: in section 2 we introduce some notation. In
section 3 we consider some properties of Fm(x) and a related function. In section 4 we
put m = 2 and prove Theorems 1 and 2, and in section 5 we put m = p, an odd prime,
and prove Theorems 3 and 4.
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2. We define a linear operator Um acting on any power series/(a;) = Yin>Na{n)xn by

Umf(x) = 2 a(mn)xn.

Clearly £U/i(z)/2(zm)) = /.(*) ^ A ^ ) -

If u> is a primitive with root of unity, it is easily seen that

1 m - l
Umf(x) = - 2 /(«Az1/m). (5)

"4Z. = 0

For # prime we also define a valuation np by

pnp{a)\a, pVpW+^a

for any integer a. If a = 0, we write conventionally 77p(a) = oo and regard any
inequality 7Tp(0) > b as valid. Clearly

np{ac) = 7rp(a) + np{c),

np(a) * 7rp(c) implies np(a + c) = min(7rJ)(a), ^ ( c ) ) ,

np(a) = np(c) implies 77p(a + c) > ̂ ( o ) ,

77-2(a) = TT2(C) implies 772(a + c) > 772(0)^

3. We now write g»(a;) = .

I t is clear tha t all the roots of the equation

regarded as an equation in y, are given by

y = g(o)xxllm) (0 < A < m),

where w is a primitive mth root of unity. Thus, if Sr denotes the sum of the rth powers
of the roots of (6), we have, by (5),

Umg'(x) = i s r .

[ 7Yl\
Writing (6) as i/™ + ff(») 2 ( - 1 )* , I ym~k = 0.

we find by Newton's formulae, writing g = g(x), that

8r = "JN -1)**1 (™) flf-8^* + r( - l)'+i ( 7 ) g. (7)

Now, let Ar = hT(x) = gT-gr-x (r ^ 1),

t It is because of this feature, peculiar to p = 2, that we in Theorem 1 are able to give the
exact power of 2 dividing the expression involved.

29-2
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Then Vmr = Usr-Sr_l),
lib

r-2 i m \

and (7) gives Vmr = 2JL- l)k[k+ 1)gVm,r-*-i (r ̂  2), (8)

since Vml = hv

By induction on r, it is now easily proved that

L = S a ) ^ 2 (r>2), (9)
i 0

(10)
and ccmr(i) = 2 ( - ^ ( / " W ^ ^ i - l ) (1 < * ̂  r-2),

where in fact ccmr(i) = 0 if (i+ \)m < r— 1 (i.e. if i < [(r—2)/m]).
We now prove

LEMMA 1. For p prime, we have

Proof. We use induction on r. From (10) we see that Lemma 1 holds for r = 2.
Assuming Lemma 1 for all r, 2 ^ r < R, for some R > 2, we obtain from (10)

looking separately at the cases k = and =)= p — 1. This is Lemma 1 for r = R, completing
the proof.

Now, let Hmr = F^(x)^TJmrn)xn (r > 0).

Then Hm0 = hlt and Hmr = Um(gHm<r_x) (r > 0).

Especially we find Hml = mh2, which shows that

Tm(mn) = 0 (modm).

By induction on r it is now easily shown that

Hmr =r;£/3mr(i)hi+2 ( r > 0 ) , (11)

where all the /?mr(i) are integers, and

/?«,(»)= S *m,i+a(i)fimr-lti) (T > 1). (12)
> ( 0 i l )

Especially we see that fimr(r- 1) = mr<r+1"2.
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4. In this section we put m = 2 and drop the suffix m in our notation. From (10) it
follows that

Let Kr^

Then Kr = F~\x) £ (b(2r+1n)-b(2r-1n))xn. (13)
7 1 = 1

By (11) we get K2 = 23h3. (14)

Similarly to (11) we find Kr = ' s yr{i) hi+2 (r > 2),
£ = 1

where 7r(i) = £ aj+S)yr-i{J) U > 3). (15)
> ( l i l )

For integral r we define a symbol *r to mean = if r is odd and > if r is even. Now
we have

LEMMA 2.1fr^ 2, then 7r(yr(l)) = - ^ — ,
L * J

"(7,(2)) *,

Proof. From (14) we see that Lemma 2 holds for r = 2. Assuming Lemma 2 for all r,
2 ^r < B, for some 2? > 2, we obtain from (15)

n(7R(i))

Further we have yB(l) = - 2«y«_1(l) + 7B-I(2)-

Now,

thus

Similarly we find that ^(7^(2)) *R .
L 2 J

This completes the proof of Lemma 2.
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By (13) and Lemma 2 we now have if r > 0,

b(2r+2n) - b(2rn) = 2^r)d(n) (mo

where fi{r) is gi ven as in Theorem 1, and

n=l

Thus d(n)=

(n)xn = h3(x)F(z).

since 6(n) = 0(mod2) if n ^ 2. This completes the proof of Theorem 1.
Now, yr{r— 1) = fir(r — 1), and

where all the 8r(i) are integers by Lemma 2. For fixed r there certainly exist constants
Zj = ZAr) such that r-i

r K + 1 ^ t ,
3=2

and the Zj are given as the solution of the linear equations

- f c - l ) (k = l , . . . , r - l ) .

From this we see that

Zr_k = 2K3*+WVi(*) (* = 1,....r- 1),

where all the ar(Jfc) are integers. Thus we have

B(2rn) =*£ 2l(3i+»'%r(i)JB(2'-in
i = l

oo a> n Ir i I-

where SeW^ = U ^ W = S El
»=1 n=l.fc = l \

This completes the proof of Theorem 2.

5. In this section we take m = p, an odd prime, and when no ambiguity is likely
to arise, we drop the suffix m in the notations of sections 1, 2 and 3.

LEMMA 3. 7r(/?r(i)) ^ r + ^ + 1> (r > 0).

This follows immediately from (12), Lemma 1, and induction on r. Now we have

Hr = TZpr+iii+1)l2er(i)hi+2 (r > 0),
i=0

where all the er(i) = epr(i) are integers. From (10) and (12) we get

^ ^ if p > 3 ,

e3r(0) = -e3,r-i(0)+e3,r-2(0) (mod 3).
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Now epl(O) = 1, e32(0) = - 1, and we find that

er(O) = Ar (

where Ar = Apr is given as in Theorem 3.

Now, T(prn) = prAJ(n)

where £ f(n) xn = h2(x) F(x).

Thus f{n) ="s {n-k)t(k).
fc = 0

By means of the relations (3) and (4), it is easily shown that

(mod,).

This completes the proof of Theorem 3.
By a similar technique to that which we applied at the end of section 4 we further get

where all the cr(i) are integers. Thus we have

T{prn) = '•£ p \
i

nwhere £ g(n)xn = hr+1(x)F(x) = £ z(
n=l n=lfc=0\ r—l

This completes the proof of Theorem 4.
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