# STATISTICAL PROPERTIES OF THE CALKIN–WILF TREE: REAL AN *p*–ADIC DISTRIBUTION

GIEDRIUS ALKAUSKAS, JÖRN STEUDING

ABSTRACT. We examine statistical properties of the Calkin–Wilf tree and give number-theoretical applications.

# 1. A MEAN-VALUE RELATED TO THE CALKIN-WILF TREE

The Calkin–Wilf tree is generated by the iteration

$$\frac{a}{b} \quad \mapsto \quad \frac{a}{a+b} \;, \quad \frac{a+b}{b},$$

starting from the root  $\frac{1}{1}$ ; the number  $\frac{a}{a+b}$  is called the left child of  $\frac{a}{b}$  and  $\frac{a+b}{b}$  the right child; we also say that  $\frac{a}{b}$  is the mother of its children. Recently, Calkin & Wilf [1] have shown that this tree contains any positive rational number once and only once, each of which represented as a reduced fraction. The first iterations lead to



Reading the tree line by line, the Calkin–Wilf enumeration of  $\mathbb{Q}^+$  starts with

$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{1}, \frac{1}{4}, \frac{4}{3}, \frac{3}{5}, \frac{5}{2}, \frac{2}{5}, \frac{5}{3}, \frac{3}{4}, \frac{4}{1}, \dots$$

As recently pointed out by Reznick [10], this sequence was already investigated by Stern [12] in 1858. This sequence satisfies also the iteration

$$x_1 = 1, \quad x_{n+1} = \frac{1}{2}(2[x_n] + 1 - x_n),$$

where [x] denotes the largest integer  $\leq x$ ; this observation is due to Newman (cf. [8]), answering a question of D.E. Knuth, resp. Vandervelde & Zagier (cf. [11]).

The Calkin–Wilf enumeration of the positive rationals has many interesting features. For instance, it encodes the hyperbinary representations of all positive integers (see [1]). Furthermore, it can be used as model for the game *Euclid* first formulated by Cole & Davie [2]; see Hofmann, Schuster & Steuding [5]. In this short note we are concerned with statistical properties of the Calkin–Wilf tree.

We write the *n*th generation of the Calkin–Wilf tree as  $\mathcal{CW}^{(n)} = \{x_j^{(n)}\}_j$ , where the  $x_n^{(j)}$  are the elements ordered according to their appearance in the *n*th line of the Calkin–Wilf tree. So  $\mathbb{Q}^+ = \bigcup_{n=1}^{\infty} \mathcal{CW}^{(n)}$ . Obviously,  $\mathcal{CW}^{(n)}$  consists of  $2^{n-1}$  elements. Denote by  $\Sigma(n)$  the sum of all elements of the *n*th generation of the Calkin–Wilf tree,

$$\Sigma(n) = \sum_{j=1}^{2^{n-1}} x_j^{(n)}.$$

Our first result gives the mean-value of the elements of the nth generation of the Calkin–Wilf tree:

**Theorem 1.** For any  $n \in \mathbb{N}$ ,

$$\Sigma(n) = 3 \cdot 2^{n-2} - \frac{1}{2}$$

This result may be interpreted as follows. We observe that  $x_1^{(n)} = \frac{1}{n}$  and  $x_{2^{n-1}}^{(n)} = \frac{n}{1}$  for all  $n \in \mathbb{N}$ , and thus  $\mathcal{CW}^{(n)}$  is supported on an unbounded set as  $n \to \infty$ . However, the average value of the  $2^{n-1}$  elements of the *n*th generation  $\mathcal{CW}^{(n)}$  is approximately  $\frac{3}{2}$ , which is, surprisingly, a finite number. This has a simple explanation: in some sense, *small* values are taken in earlier generations than *large* values. For instance, in each generation  $\mathcal{CW}^{(n)}$  takes as many values form the interval (0, 1) as from  $(1, \infty)$ . This result was also recently proved by Reznick [10]; his proof differs slightly from our argument.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>The problem of determining the average value of the Calkin–Wilf tree was posed by the second named author as a problem in the problem session of the IV International conference on analytic and probabilistic number theory in Palanga 2006; an independent solution was given by Eduard Wirsing.

**Proof** by induction on n. The statement of the theorem is correct for n = 1 and n = 2. Now suppose that  $n \ge 3$ . In order to prove the statement for n we first observe a symmetry in the Calkin–Wilf tree with respect to its middle: for  $n \ge 2$ ,

$$x_j^{(n)} = \frac{a}{b} \qquad \Longleftrightarrow \qquad x_{2^{n-1}+1-j}^{(n)} = \frac{b}{a} ; \qquad (1)$$

this is easily proved by another induction on n (and we leave its simple verification to the reader). Further, we note that  $x_j^{(n)} \leq 1$  if and only if j is odd; here equality holds if and only if n = 1.

Now we start to evaluate  $\Sigma(n)$ . For this purpose we compute

$$y_j^{(n)} := \begin{cases} x_j^{(n)} + x_{2^{n-1}-j}^{(n)} & \text{for } j = 1, 2, \dots, 2^{n-2} - 1, \\ x_j^{(n)} + x_{2j}^{(n)} & \text{for } j = 2^{n-2}, \end{cases}$$

and add these values over  $j = 1, 2, \ldots, 2^{n-2}$ . Clearly,  $\Sigma(n) = \sum_{j=1}^{2^{n-2}} y_j^{(n)}$ .

First, assume that j is odd. Then both,  $x_j^{(n)}$  and  $x_{2^{n-1}-j}^{(n)}$  are strictly less than 1. In view of (1) the mothers of  $x_j^{(n)}$  and  $x_{2^{n-1}-j}^{(n)}$  are of the form  $\frac{a}{b}$  and  $\frac{b}{a}$ , respectively. Hence,

$$x_j^{(n)} + x_{2^{n-1}-j}^{(n)} = \frac{a}{a+b} + \frac{b}{a+b}$$

and thus we find  $y_j^{(n)} = 1$  in this case.

Next, we consider the case that j is even. Then both,  $x_j^{(n)}$  and  $x_{2^{n-1}-j}^{(n)}$  are strictly greater than 1. If the mothers of  $x_j^{(n)}$  and  $x_{2^{n-1}-j}^{(n)}$  are of the form  $\frac{a}{b}$  and  $\frac{a'}{b'}$ , respectively, then

$$x_j^{(n)} = \frac{a+b}{b} = 1 + \frac{a}{b}$$
 and  $x_{2^{n-1}-j}^{(n)} = 1 + \frac{a'}{b'}$ .

Hence, we find for their sum

$$x_j^{(n)} + x_{2^{n-1}-j}^{(n)} = 2 + \frac{a}{b} + \frac{a'}{b'}$$

and so  $y_j^{(n)} = 2 + y_k^{(n-1)}$ , where  $y_k^{(n-1)}$  is either the sum of two elements  $x_k^{(n-1)}$  and  $x_{2^{n-2}-k}^{(n-1)}$  or the sum of  $x_{2^{n-3}}^{(n-1)}$  and  $x_{2^{n-2}}^{(n-1)}$ .

It remains to combine both evaluations. Since both cases appear equally often, namely each  $2^{n-3}$  times, we obtain the recurrence formula

$$\Sigma(n) = \Sigma(n-1) + (1+2) \cdot 2^{n-3},$$

being valid for  $n \geq 3$ . This implies the assertion of the theorem.

## 2. An application to finite continued fractions

Theorem 1 has a nice number-theoretical interpretation. It is wellknown that each positive rational number x has a representation as a finite (regular) continued fraction

$$x = a_0 + \frac{1}{a_1 + \dots + \frac{1}{a_{m-1} + \frac{1}{a_m}}}$$

with  $a_0 \in \mathbb{N} \cup \{0\}$  and  $a_j \in \mathbb{N}$  for some  $m \in \mathbb{N} \cup \{0\}$ . In order to have a unique representation, we assume that  $a_m \geq 2$  if  $m \in \mathbb{N}$ . We shall use the standard notation  $x = [a_0, a_1, \ldots, a_m]$ . Continued fractions are of special interest in the theory of diophantine approximation.

As Bird, Gibbons & Lester [3] showed, the *n*th generation of the Calkin–Wilf tree consists exactly of those rationals having a continued fraction expansion  $[a_0, a_1, \ldots, a_m]$  for which the sum of the partial quotients  $a_j$  is constant *n*, the continued fractions of even length in the left subtree, and the continued fractions with odd length in the right subtree. Thus Theorem 1 yields

**Corollary 2.** For any  $n \in \mathbb{N}$ ,

$$2^{1-n} \sum_{a_0+a_1+\ldots+a_m=n} [a_0, a_1, \ldots, a_m] = \frac{3}{2} - 2^{-n}.$$

One can use the approach via continued fractions to locate any positive rational in the tree. This observation is due to Bird, Gibbons & Lester [3] (actually, their reasoning is based on Graham, Knuth & Patasnik [4] who gave such a description for the related Stern–Brocot tree). Given a reduced fraction x in the Calkin–Wilf tree with continued fraction expansion

$$x = [a_0, a_1, \dots, a_{m-2}, a_{m-1}, a_m],$$

we associate the path

$$\mathsf{L}^{a_m-1}\mathsf{R}^{a_{m-1}}\mathsf{L}^{a_{m-2}}\cdots\mathsf{L}^{a_1}\mathsf{R}^{a_0} \quad \text{if} \quad m \text{ is odd, and}$$
$$\mathsf{R}^{a_m-1}\mathsf{L}^{a_{m-1}}\mathsf{R}^{a_{m-2}}\cdots\mathsf{R}^{a_1}\mathsf{L}^{a_0} \quad \text{if} \quad m \text{ is even};$$

note that  $a_m - 1 \ge 1$  for  $m \in \mathbb{N}$ . The notation  $\mathbb{R}^a$  with  $a \in \mathbb{N} \cup \{0\}$  means: a steps to the right, whereas  $\mathsf{L}^b$  with  $b \in \mathbb{N} \cup \{0\}$  stands for b steps to the left. Then, starting from the root  $\frac{1}{1}$  and following this path from left to right, we end up with the element x. This follows easily from the iteration with which the tree was build; notice that this claim is essentially already contained in Lehmer [7] (this was also observed by Reznick [10]).

**Corollary 3.** Given any non-empty interval  $(\alpha, \beta)$  in  $\mathbb{R}^+$ , and any finite path in the Calkin–Wilf tree, there exists a continuation of this path which contains a rational number from the interval  $(\alpha, \beta)$ .

**Proof.** We expand  $\alpha$  and  $\beta$  into continued fractions,  $\alpha = [a_0, a_1, \ldots]$ and  $\beta = [b_0, b_1, \ldots]$ , say. Let k be the least index such that  $a_k \neq b_k$ . According to the parity of k we have  $a_k < b_k$  (if k is even) or  $a_k > b_k$  (if k is odd). Without loss of generality we may assume that  $|b_k - a_k| \geq 2$ (since otherwise we may consider a subinterval of  $(\alpha, \beta)$ ). Moreover we may suppose that the path in question is starting from the root and is given in the form  $\mathsf{L}^{c_m-1}\mathsf{R}^{c_{m-1}}\mathsf{L}^{c_{m-2}}\cdots\mathsf{L}^{c_1}\mathsf{R}^{c_0}$  (the other case may be treated analogously). Then we construct a rational number x by assigning the finite continued fraction

$$x = [a_0, a_1, \dots, a_{k-1}, x_k, x_{k+1}, c_0, c_1, \dots, c_{m-2}, c_{m-1}, c_m],$$

where  $x_k := \min\{a_k, b_k\} + 1$  and  $x_{k+1}$  denotes the string 1 if k is odd, resp. 1, 1 if k is even. Since  $b_j = a_j$  for  $0 \le j < k$  and

$$\min\{a_k, b_k\} < x_k < \max\{a_k, b_k\},$$

it follows that  $\alpha < x < \beta$ . Since the length of the continued fraction expansion has the same parity as m (thanks to the definition of  $x_{k+1}$ ), the element x can be reached by the path  $\mathsf{L}^{c_m-1}\mathsf{R}^{c_{m-1}}\mathsf{L}^{c_{m-2}}\cdots\mathsf{L}^{c_1}\mathsf{R}^{c_0}$ . This proves the corollary.

## 3. A RANDOM WALK ON THE CALKIN–WILF TREE

Starting with  $X_1 = \frac{1}{1}$ , we define a sequence of random variables by the following iteration: if  $X_n = \frac{a}{b}$ , then  $X_{n+1} = \frac{a}{a+b}$  with probability  $\frac{1}{2}$  and  $X_{n+1} = \frac{a+b}{b}$  with probability  $\frac{1}{2}$ . The sequence  $\{X_n\}$  may be regarded as a random walk on the Calkin–Wilf tree where n is a discrete time parameter.

**Theorem 4.** Let  $(\alpha, \beta)$  be any non-empty interval in  $\mathbb{R}^+$ . Then, with probability 1, the random walk  $\{X_n\}$  visits the interval  $(\alpha, \beta)$ , i.e., with probability 1, there exists  $m \in \mathbb{N}$  such that  $x_m \in (\alpha, \beta)$ .

**Proof.** The interval  $(\alpha, \beta)$  contains a non-empty subinterval [A, B]such that for any  $\zeta \in [A, B]$  the initial partial quotients  $c_0, c_1, \ldots, c_m$ are identical:  $\zeta = [c_0, c_1, \ldots, c_m, \ldots]$ . Hence, with the interval [A, B] we may associate a path pattern  $\mathsf{L}^{c_m-1}\mathsf{R}^{c_{m-1}}\mathsf{L}^{c_{m-2}}\cdots\mathsf{L}^{c_1}\mathsf{R}^{c_0}$  in the Calkin-Wilf tree such that any path in the tree starting from the root and ending with  $\mathsf{L}^{c_m-1}\mathsf{R}^{c_{m-1}}\mathsf{L}^{c_{m-2}}\cdots\mathsf{L}^{c_1}\mathsf{R}^{c_0}$  points to an element in [A, B]. Since the probability is  $\frac{1}{2}$  for both  $\frac{a}{b} \mapsto \frac{a}{a+b}$  and  $\frac{a}{b} \mapsto \frac{a+b}{b}$ , each pattern of fixed length m appears with the same probability and so we may restrict on the path pattern  $R^k$ .

In the case k = 1 we find in each generation exactly one which ends with R but does not contain any R before (actually, this is  $L^{n-1}R$  in generation n). Adding up all probabilities for these paths, we get

$$\sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^j = 1,$$

and so, with probability 1, the random walk  $X_n$  will go to the right child for some n. Now assume that the statement is true for k. We shall show that then it is also true for k+1. For each path of the form  $XR^k$ , where X is any combination of powers of L and R, there are two paths  $XR^kL$  and  $XR^{k+1}$ , so by induction the probability that the random walk eventually follows the path  $R^{k+1}$  is at least  $\frac{1}{2}$ . However, for each path  $XR^k$  one also has to consider the subtrees starting from  $XR^kL^d$ for  $d = 1, 2, \ldots$ , each of which containing paths which end  $R^{k+1}$ . By self-similarity, the probability that the random walk eventually follows the path  $R^{k+1}$  is

$$\sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^j \sum_{d=1}^{\infty} \left(\frac{1}{2}\right)^d = 1.$$

This proves the theorem.  $\blacksquare$ 

4. Statistical properties of the Calkin–Wilf tree

In view of Corollary 2 it is interesting to have a better understanding of the statistics of the Calkin–Wilf tree. The following theorem gives the limit distribution function in explicit form.

**Theorem 5.** Let  $F_n(x)$  denote the distribution function of the n-th generation, i.e.,

$$F_n(x) = 2^{1-n} \# \{ j : x_j^{(n)} \le x \}.$$

Then uniformly  $F_n(x) \to F(x)$ , where

$$F([a_0, a_1, a_2, a_3, \ldots]) = 1 - 2^{-a_0} + 2^{-(a_0 + a_1)} - 2^{-(a_0 + a_1 + a_2)} + \ldots$$

(for rational numbers  $x = [a_0, a_1, ...]$  this series terminates at the last non-zero partial quotient of the continued fraction). Thus, F(0) = 0,  $F(\infty) = 1$ , and F(x) is a monotonically increasing function. Moreover, F(x) is continuous and singular, i.e., F'(x) = 0 almost everywhere.

**Proof.** Let  $x \ge 1$ . One half of the fractions in the n+1-st generation do not exceed 1, and hence also do not exceed x. Further,

$$\frac{a+b}{b} \le x \quad \iff \quad \frac{a}{b} \le x-1.$$

Hence,

$$2F_{n+1}(x) = F_n(x-1) + 1, \quad n \ge 1.$$

Now assume 0 < x < 1. Then

$$\frac{a}{a+b} \le x \quad \iff \quad \frac{a}{b} \le \frac{x}{1-x}.$$

Therefore,

$$2F_{n+1}(x) = F_n\left(\frac{x}{1-x}\right).$$

The distribution function F, defined in the formulation of the theorem, satisfies the functional equation

$$2F(x) = \begin{cases} F(x-1) + 1 & \text{if } x \ge 1, \\ F(\frac{x}{1-x}) & \text{if } 0 < x < 1. \end{cases}$$

For instance, the second identity is equivalent to  $2F(\frac{t}{t+1}) = F(t)$  for all positive t. If  $t = [b_0, b_1, ...]$ , then  $\frac{t}{t+1} = [0, 1, b_0, b_1, ...]$  for  $t \ge 1$ , and  $\frac{t}{t+1} = [0, b_1+1, b_2, ...]$  for t < 1, and the statement follows immediately. Now define  $\delta_n(x) = F(x) - F_n(x)$ . In order to prove the first assertion of the theorem, the uniform convergence  $F_n \to F$ , it is sufficient to show that

$$\sup_{x \ge 0} |\delta_n(x)| \le 2^{-n}.$$
 (2)

It is easy to see that the assertion is true for n = 1. Now suppose the estimate is true for n. In view of the functional equation for both  $F_n(x)$  and F(x), we have

$$2\delta_{n+1}(x) = \delta_n\left(\frac{x}{1-x}\right)$$

for 0 < x < 1, which gives  $\sup_{0 \le x < 1} |\delta_{n+1}(x)| \le 2^{-n-1}$ . Moreover, we have

$$2\delta_{n+1}(x) = \delta_n(x-1)$$

for  $x \ge 1$ , which yields the same bound for  $\delta_n(x)$  in the range  $x \ge 1$ . This proves (2).

Clearly, F, as a distribution function, is monotonic; obviously, it is also continuous. It remains to prove that F(x) is singular. Given an irrational number  $\alpha = [a_0, a_1, a_2, ...]$ , we consider the sequence

$$\alpha_n = [a_0, a_1, \dots, a_{n-1}, a_n + 1, a_{n+1}, \dots];$$

obviously,  $\alpha_n$  is the real number which is defined by the continued fraction expansion of  $\alpha$ , where the *n*th partial quotient  $a_n$  is replaced by  $a_n + 1$ . Depending on the parity of n,  $\alpha_n$  is less than or greater than  $\alpha$ . Thus, any real number y, which is sufficiently close to  $\alpha$ , is contained between two terms of the sequence,  $\alpha_L$  and  $\alpha_{L+2}$  say. Then

$$\left|\frac{F(y) - F(\alpha)}{y - \alpha}\right| \le \left|\frac{F(\alpha_L) - F(\alpha)}{\alpha_{L+2} - \alpha}\right|.$$

From the explicit form of F we deduce

$$|F(\alpha_L) - F(\alpha)| \le \frac{1}{2} 2^{-(a_0 + a_1 + \dots + a_L)}$$

On the other hand,

$$\begin{aligned} |\alpha_{L+2} - \alpha| &\geq ([a_1, a_2, \dots, a_{L+2} + 1, \dots] - [a_1, a_2, \dots, a_{L+2}, \dots])(a_0 + 1)^{-2} \\ &\geq \left( (a_0 + 1)(a_1 + 1)\dots(a_{L+2} + 1) \right)^{-2} \end{aligned}$$

by induction. Thus,

$$\left|\frac{F(y) - F(\alpha)}{y - \alpha}\right| \le 2^{1 - (a_0 + a_1 + \dots + a_L)} \prod_{i=1}^{L+2} (a_i + 1)^2.$$

The theorem of Khinchin ([9], p. 86, implies that  $\prod_{i=1}^{n} (a_i + 1)^{1/n}$  tends to a fixed constant limit almost everywhere. On the other hand, the same reasoning shows that  $\frac{1}{n} \sum_{i=1}^{n} a_n$  tends to infinity for almost all x. Thus, almost everywhere the limit

$$\lim_{y \to \alpha} (F(y) - F(\alpha))(y - \alpha)^{-1}$$

exists and is equal 0. This finishes the proof of the theorem.  $\blacksquare$ 

By the same argument as for the singular behaviour of F we can show that  $F'(\frac{\sqrt{5}+1}{2}) = \infty$ . Actually, the terms of  $CW^{(n)}$  are densely concentrated around numbers with  $F'(x) = \infty$  and scarcely around those where F'(x) = 0. The value of F(x) is rational iff x is either rational or quadratic irrationality, e.g.

$$F(1) = \frac{1}{2}, \quad F(\sqrt{2}) = \frac{3}{5}, \quad F((\sqrt{5}+1)/2) = \frac{2}{3}$$

This follows immediately from Lagrange's theorem which characterizes the quadratic irrationals by their eventually periodic continued fraction expansion. For Euler's number  $e = [2, \overline{1, 2n, 1}]$  we find that F(e) can be expressed in terms of special values of Jacobi theta functions.

#### 5. Characteristics of the distribution function

In view of Corollary 2, the mean of the distribution function F is  $\frac{3}{2}$ . Since F has a tail of exponential decay, more precisely  $1 - F(x) = O(2^{-x})$ , it follows that all moments exist. For  $k \in \mathbb{N}_0$ , the *k*th moment is defined by

$$M_k = \int_0^\infty x^k \,\mathrm{d}F(x).$$

In order to give an asymptotic formula for  $M_k$  let

$$m_k = \int_0^\infty \left(\frac{x}{x+1}\right)^k \mathrm{d}F(x)$$

We will see that the generating function of  $m_k$  has some interesting properties. Let  $\omega(x)$  be a continuous function of at most power growth:  $\omega(x) \ll x^T$  as  $x \to \infty$ . By the functional equation for F we find  $F(x+n) = 1 - 2^{-n} + 2^{-n}F(x), x \ge 0$ . Hence

$$\int_{0}^{\infty} \omega(x) \,\mathrm{d}F(x) = \sum_{n=0}^{\infty} \int_{0}^{1} \omega(x+n) \,\mathrm{d}F(x+n)$$
$$= \int_{0}^{1} \sum_{n=0}^{\infty} \frac{\omega(x+n)}{2^{n}} \,\mathrm{d}F(x);$$

these integrals exist in view of our assumptions and the fact that F(x) has a tail of exponential decay. Let  $x = \frac{t}{t+1}$  for  $t \ge 0$ . Since  $F(\frac{t}{t+1}) = \frac{1}{2}F(t)$ , this change of variables gives

$$\int_{0}^{\infty} \omega(x) \,\mathrm{d}F(x) = \sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{\omega(\frac{t}{t+1}+n)}{2^{n+1}} \,\mathrm{d}F(t)$$

(All changes of order of summation and integration are justified by the condition we put on  $\omega(x)$ ). Now let  $\omega(x) = x^L$  for some  $L \in \mathbb{N}_0$  and define

$$b_s = \sum_{n=0}^{\infty} \frac{n^s}{2^{n+1}}.$$

Then

$$\int_{0}^{\infty} x^{L} \,\mathrm{d}F(x) = \int_{0}^{\infty} \sum_{i=0}^{L} \left(\frac{x}{x+1}\right)^{i} \binom{L}{i} b_{L-i} \,\mathrm{d}F(x),$$

whence the relation

$$M_L = \sum_{i=0}^{L} m_i \binom{L}{i} b_{L-i} \tag{3}$$

for  $L \in \mathbb{N}_0$ . The generating function of the sequence of the  $b_s$  is given by

$$b(t) = \sum_{L=0}^{\infty} \frac{b_L}{L!} t^L = \sum_{L=0}^{\infty} \sum_{n=0}^{\infty} \frac{n^L t^L}{2^{N+1} L!} = \sum_{n=0}^{\infty} \frac{e^{nt}}{2^{n+1}} = \frac{1}{2 - e^t}.$$

Denote by M(t) and m(t) the corresponding generating functions of the coefficients  $M_k$  and  $m_k$ , respectively. Then we can rewrite (3) as

$$M(t) = \sum_{L=0}^{\infty} \frac{M_L}{L!} t^L = \frac{1}{2 - e^t} \sum_{L=0}^{\infty} \frac{m_L}{L!} t^L = \frac{1}{2 - e^t} m(t).$$

The function m(t) is entire, and M(t) has a positive radius of convergence. This already allows us to find approximate values of the moments  $M_L$ .

**Theorem 6.** For  $L \in \mathbb{N}_0$ ,

$$M_L = \frac{m(\log 2)}{2\log 2} \left(\frac{1}{\log 2}\right)^L L! + O_{\varepsilon} \left( ((4\pi^2 + (\log 2)^{1/2} - \varepsilon)^{-L}) L! \right)$$
$$= \left(\frac{m(\log 2)}{2\log 2} \left(\frac{1}{\log 2}\right)^L + O(6.3^{-L}) L! \right)$$

**Proof.** By Cauchy's formula, for any sufficiently small r,

$$M_L = \frac{L!}{2\pi i} \int_{|z|=r} \frac{M(z)}{z^{L+1}} \,\mathrm{d}z.$$

Changing the path of integration, we get by the calculus of residues

$$M_L = -\text{Res}_{z=\log 2} \left( \frac{m(z)}{(2-e^z)z^{L+1}} \right) - \frac{L!}{2\pi i} \int_{|z|=R} \frac{m(z)}{2-e^z} \frac{\mathrm{d}z}{z^{L+1}},$$

where R satisfies  $\log 2 < R < |\log 2 + 2\pi i|$  (which means that there is exactly one simple pole of the integrand located in the interior of the circle |z| = R). It is easily seen that the residue coincides with the main term in the formula of the lemma; the error term follows from estimating the integral.

We obtain the inverse to the linear equations (3):

$$m_L = M_L - \sum_{s=0}^{L-1} M_s \binom{L}{s}$$

for  $L \in \mathbb{N}_0$ . Since  $b(t)(2-e^t) = 1$ , the coefficients  $b_L$  can be calculated recursively

$$b_L = \sum_{s=0}^{L-1} \binom{L}{s} b_s.$$

Thus,  $b_0 = 1, b_1 = 1, b_2 = 3, b_3 = 13, b_4 = 75, b_5 = 541.$ 

We proceed with a property of the function m(t) which reflects the symmetry of the distribution function: F(y) + F(1/y) = 1. Unfortunately, this property is still insufficient for determining the coefficients  $m_L$ . As a matter of fact,

$$m_{L} = \int_{0}^{\infty} \left(\frac{x}{x+1}\right)^{L} dF(x) = -\int_{0}^{\infty} \left(\frac{1/x}{1/x+1}\right)^{L} dF(1/x)$$
$$= \int_{0}^{\infty} \left(\frac{1}{x+1}\right)^{L} dF(x).$$

Since

$$\left(\frac{x}{x+1}\right)^{L} = \left(\frac{x+1-1}{x+1}\right)^{L} = \sum_{s=0}^{L} {\binom{L}{s}} (-1)^{L-s} \left(\frac{1}{x+1}\right)^{L-s},$$

this gives

$$m_L = \sum_{s=0}^{L} \binom{L}{s} (-1)^s m_s$$

for  $L \ge 0$ . For example,  $m_1 = m_0 - m_1$ , which gives  $m_1 = \frac{1}{2}$  (since  $m_0 = 1$ ), and thus  $M_1 = \frac{3}{2}$  (see Theorem 1). For the other coefficients we only get linear relations. Thus,  $2m_3 = -\frac{1}{2} + 3m_2$ . In terms of m(t) the recursion formula above yields the identity

$$m(t) = m(-t)e^t.$$

We conclude this chapter with the result, which uniquely determines the function m(t) (along with the condition m(0) = 1).

**Theorem 7.** The function m(s) satisfies the integral equation

$$m(-s) = (2e^s - 1) \int_0^\infty m'(-t) J_0(2\sqrt{st}) \,\mathrm{d}t, \quad s \in \mathbb{R}_+,$$

where  $J_0(*)$  stands for the Bessel function:

$$J_0(z) = \frac{1}{\pi} \int_0^{\pi} \cos(z \sin x) \,\mathrm{d}x$$

The proof of this theorem and the solution of this integral equation, and thus the explicit description of the moments will be given in a subsequent paper.

# 6. p-Adic distribution

In the previous sections, we were interested in the distribution of the nth generation of the tree  $\mathcal{CW}$  in the field of real numbers. Since the set of non-equivalent valuations of  $\mathbb{Q}$  contains a valuation, associated with any prime number p, it is natural to consider the distribution of the set of each generation in the field of p-adic numbers  $\mathbb{Q}_p$ . In this case we have an ultrametric inequality, which implies that two circles are either co-centric, or do not intersect. We define

$$F_n(z,\nu) = 2^{-n+1} \#\{\frac{a}{b} \in \mathcal{CW}^{(n)} : \operatorname{ord}_p(\frac{a}{b} - z) \ge \nu\}, \quad z \in \mathbb{Q}_p, \quad \nu \in \mathbb{Z}.$$

(When p is fixed, the subscript p in  $F_n$  is omitted). Note that in order to calculate  $F_n(z,\nu)$  we can confine to the case  $\operatorname{ord}_p(z) < \nu$ ; otherwise  $\operatorname{ord}_p(\frac{a}{b}-z) \geq \nu \Leftrightarrow \operatorname{ord}_p(\frac{a}{b}) \geq \nu$ . We shall calculate the limit distribution  $\mu_p(z,\nu) = \lim_{n\to\infty} F_n(z,\nu)$ , and also some characteristics of it, e.g. the zeta function

$$Z_p(s) = \int_{u \in \mathbb{Q}_p} |u|^s d\mu_p, \quad s \in \mathbb{C}, \quad z \in \mathbb{Q}_p,$$

where |\*| stands for the p-adic valuation.

To illustrate how the method works, we will calculate the value of  $F_n$ in two special cases. Let p = 2, and let E(n) be the number of rational numbers in the *n*th generation with one of *a* or *b* being even, and let O(n) be the corresponding number fractions with both *a* and *b* odd. Then  $E(n) + O(n) = 2^{n-1}$ . Since  $\frac{a}{b}$  in the *n*th generation generates  $\frac{a}{a+b}$ and  $\frac{a+b}{b}$  in the (n+1)st generation, each fraction  $\frac{a}{b}$  with one of the *a*, *b* even will generate one fraction with both numerator and denominator odd. If both *a*, *b* are odd, then their two offsprings will not be of this kind. Therefore, O(n+1) = E(n). Similarly, E(n+1) = E(n) + 2O(n). This gives the recurrence E(n+1) = E(n) + 2E(n-1),  $n \ge 2$ , and this implies

$$E(n) = \frac{2^n + 2(-1)^n}{3}, \quad O(n) = \frac{2^{n-1} + 2(-1)^{n-1}}{3}, \quad \mu_2(0,0) = \frac{2}{3}.$$

(For the last equality note that  $\frac{a}{b}$  and  $\frac{b}{a}$  simultaneously belong to  $\mathcal{CW}^{(n)}$ , and so the number of fractions with  $\operatorname{ord}_2(*) > 0$  is E(n)/2). We will generalize this example to odd prime  $p \geq 3$ . Let  $L_i(n)$  be the part of the fractions in the *n*th generations such that  $ab^{-1} \equiv i \mod p$  for  $0 \leq i \leq p-1$  or  $i = \infty$  (that is,  $b \equiv 0 \mod p$ ). Thus,

$$\sum_{i \in \mathbb{F}_p \cup \infty} L_i(n) = 1;$$

in other words,  $L_i(n) = F_n(i, 1)$ . For our later investigations we need a result from the theory of finite Markov chains.

**Lemma 1.** Let  $\mathbf{A}$  be a matrix of a finite Markov chain with s stages. That is,  $a_{i,j} \geq 0$ , and  $\sum_{j=1}^{s} a_{i,j} = 1$  for all i. Suppose that  $\mathbf{A}$  is irreducible (for all pairs (i, j), and some m, the entry  $a_{i,j}^{(m)}$  of the matrix  $\mathbf{A}^m$  is strictly positive), acyclic and recurrent (this is satisfied, if all entries of  $\mathbf{A}^m$  are strictly positive for some m). Then the eigenvalue 1 is simple, if  $\lambda$  is another eigenvalue, then  $|\lambda| < 1$ , and  $\mathbf{A}^m$ , as  $m \to \infty$ , tends to the matrix  $\mathbf{B}$ , with entries  $b_{i,j} = \pi_j$ , where  $(\pi_1, ..., \pi_s)$  is a unique left eigenvector with eigenvalue 1, such that  $\sum_{j=1}^{s} \pi_j = 1$ .

A proof of this lemma can be found in [6], Section 3.1., Theorem 1.3.

**Theorem 8.**  $\mu_p(z,1) = \frac{1}{p+1}$  for  $z \in \mathbb{Z}_p$ .

**Proof.** Similarly as in the above example, a fraction  $\frac{a}{b}$  from the *n*th generation generates  $\frac{a}{a+b}$  and  $\frac{a+b}{b}$  in the (n+1)st generation, and it is routine to check that

$$L_{i}(n+1) = \frac{1}{2}L_{\frac{i}{1-i}}(n) + \frac{1}{2}L_{i-1}(n) \quad \text{for} \quad i \in \mathbb{F}_{p} \cup \{\infty\},$$
(4)

(Here we make a natural convention for  $\frac{i}{1-i}$  and i-1, if i = 1 or  $\infty$ ). In this equation, it can happen that  $i-1 \equiv \frac{i}{1-i} \mod p$ ; thus,  $(2i-1)^2 \equiv -3 \mod p$ . The recurrence for this particular *i* is to be understood in the obvious way,  $L_i(n+1) = L_{i-1}(n)$ . Therefore, if we

denote the vector-column  $(L_{\infty}(n), L_0(n), ..., L_{p-1}(n))^T$  by  $\mathbf{v}_n$ , and if  $\mathcal{A}$  is a matrix of the system (4), then  $\mathbf{v}_{n+1} = \mathcal{A}\mathbf{v}_n$ , and hence

$$\mathbf{v}_n = \mathcal{A}^{n-1} \mathbf{v}_1,$$

where  $\mathbf{v}_1 = (0, 0, 1, 0, ..., 0)^T$ . In any particular case, this allows us two find the values of  $L_i$  explicitly. For example, if p = 7, the characteristic polynomial is

$$f(x) = \frac{1}{16}(x-1)(2x-1)(2x^2+1)(4x^4+2x^3+2x+1).$$

The list of roots is

$$\alpha_1 = 1, \quad \alpha = \frac{1}{2}, \quad \alpha_{3,4} = \pm \frac{i}{\sqrt{2}}, \quad \alpha_{5,6,7,8} = \frac{-1 - \sqrt{17}}{8} \pm \frac{\sqrt{1 + \sqrt{17}}}{2\sqrt{2}},$$

(with respect to the two values for the root  $\sqrt{17}$ ), the matrix is diagonalisible, and the Jordan normal form gives the expression

$$L_i(n) = \sum_{s=1}^8 C_{i,s} \alpha_s^n.$$

Note that the elements in each row of the  $(p+1) \times (p+1)$  matrix  $\mathcal{A}$  are non-negative and sum up to 1, and thus, we have a matrix of a finite Markov chain. We need to check that it is acyclic. Let  $\tau(i) = i - 1$ , and  $\sigma(i) = \frac{i}{1-i}$  for  $i \in \mathbb{F}_p \cup \{\infty\}$ . The entry  $a_{i,j}^{(m)}$  of  $\mathcal{A}^m$  is

$$a_{i,j}^{(m)} = \sum_{i_1,\dots,i_{m-1}} a_{i,i_1} \cdot a_{i_1,i_2} \cdot \dots \cdot a_{i_{m-1},j}.$$

Therefore, we need to check that for some fixed m, the composition of  $m \sigma' s$  or  $\tau' s$  leads from any i to any j. One checks directly that for any positive k, and  $i, j \in \mathbb{F}_p$ ,

$$\begin{aligned} \tau^{p-1-j} \circ \sigma \circ \tau^k \circ \sigma \circ \tau^{i-1}(i) &= j, \\ \tau^{p-1-j} \circ \sigma \circ \tau^k(\infty) &= j, \\ \tau^k \circ \sigma \circ \tau^{i-1}(i) &= \infty; \end{aligned}$$

(for i = 0, we write  $\tau^{-1}$  for  $\tau^{p-1}$ ). For each pair (i, j), choose k in order the amount of compositions used to be equal (say, to m). Then obviously all entries of  $\mathcal{A}^m$  are positive, and this matrix satisfies the conditions of lemma. Since all columns also sum up to 1,  $(\pi_1, ..., \pi_{p+1})$ ,  $\pi_j = \frac{1}{p+1}, \ 1 \leq j \leq p+1$ , is the needed eigenvector. This proves the theorem.

**Theorem 9.** Let  $\nu \in \mathbb{Z}$  and  $z \in \mathbb{Q}_p$ , and  $ord_p(z) < \nu$  (or z = 0). Then, if z is p-adic integer,

$$\mu(z,\nu) = \frac{1}{p^{\nu} + p^{\nu-1}}.$$

If z is not integer,  $\operatorname{ord}_p(z) = -\lambda < 0$ ,

$$\mu(z,\nu) = \frac{1}{p^{\nu+2\lambda} + p^{\nu+2\lambda-1}}.$$

For  $z = 0, -\nu \leq 0$ , we have

$$\mu(0, -\nu) = 1 - \frac{1}{p^{\nu+1} + p^{\nu}}$$

This theorem allows the computation of the associated zeta-function:

Corollary 10. For s in the strip  $-1 < \Re s < 1$ ,

$$Z_p(s) = \int_{u \in \mathbb{Q}_p} |u|^s d\mu_p = \frac{(p-1)^2}{(p-p^{-s})(p-p^s)}$$

and  $Z_p(s) = Z_p(-s)$ .

The proof is straightforward. It should be noted that this expression encodes all the values of  $\mu(0, \nu)$  for  $\nu \in \mathbb{Z}$ .

**Proof of Theorem 9.** For shortness, when p is fixed, denote  $\operatorname{ord}_p(*)$  by v(\*). As before, we want a recurrence relation among the numbers  $F_n(i,\kappa)$ ,  $i \in \mathbb{Q}_+$ . For each integral  $\kappa$ , we can confine to the case  $i < p^{\kappa}$ . If i = 0, we only consider  $\kappa > 0$  and call these pairs  $(i,\kappa)$  "admissible". We also include  $G_n(0, -\kappa)$  for  $\kappa \ge 1$ , where these values are defined in the same manner as  $F_n$ , only inversing the inequality, considering  $\frac{a}{b} \in CW^{(n)}$ , such that  $v(\frac{a}{b}) \le -\kappa$ ; the ratio of fractions in the *n*th generation outside this circle. As before, a fraction  $\frac{a}{b}$  in the (n+1)st generation. Let  $\tau(i,\kappa) = ((i-1) \mod p^{\kappa}, \kappa)$ . Then for all admissible pairs  $(i,\kappa)$ ,  $i \ne 0$ , the pair  $\tau(i,\kappa)$  is also admissible, and

$$v(\frac{a+b}{b}-i) = \kappa \Leftrightarrow v(\frac{a}{b}-(i-1)) = \kappa.$$

Second, if  $\frac{a}{a+b} = i + p^{\kappa}u$ ,  $i \neq 1$ ,  $u \in \mathbb{Z}_p$ , and  $(i, \kappa)$  is admissible, then

$$\frac{a}{b} - \frac{i}{1-i} = \frac{p^{\kappa}u}{(1-i)(1-i-p^{\kappa}u)}.$$

Since  $v(\frac{i}{1-i}) = v(i) - v(1-i)$ , this is 0 unless *i* is an integer, equals to v(i) if the latter is > 0 and equals to -v(1-i) if v(1-i) > 0. Further, this difference has valuation  $\geq \kappa_0 = \kappa$ , if  $i \in \mathbb{Z}, i \not\equiv 1 \mod p$ , valuation  $\geq \kappa_0 = \kappa - 2v(1-i)$ , if  $i \in \mathbb{Z}, i \equiv 1 \mod p$ , and valuation  $\geq \kappa_0 = \kappa - 2v(i)$  if *i* is not integer. In all three cases, easy to check, that, if we define  $i_0 = \frac{i}{1-i} \mod p^{\kappa_0}$ , the pair  $\sigma(i, \kappa) = {}^{\text{def}}(i_0, \kappa_0)$  is admissible. For the converse, let  $\frac{a}{b} = i_0 + p^{\kappa_0}u$ ,  $u \in \mathbb{Z}_p$ . Then

$$\frac{a}{a+b} - \frac{i_0}{1+i_0} = \frac{p^{\kappa_0}}{(1+i_0+p^{\kappa_0}u)(1+i_0)}$$

If  $i = \frac{i_0}{1+i_0}$  is a *p*-adic integer,  $i \not\equiv 1 \mod p$ , this has a valuation  $\geq \kappa = \kappa_0$ ; if *i* is a *p*-adic integer,  $i \equiv 1(p)$ , this has valuation

$$\geq \kappa = \kappa_0 - 2v(i_0) = \kappa_0 + 2v(1-i);$$

if i is not a p-adic integer, this has valuation

$$\geq \kappa = \kappa_0 - 2v(1+i_0) = \kappa_0 + 2v(i).$$

Thus,

$$v(\frac{a}{a+b}-i) \ge \kappa \Leftrightarrow v(\frac{a}{b}-i_0) \ge \kappa_0$$

Let i = 1. If  $\frac{a}{a+b} = 1 + p^{\kappa}u$ , then  $\kappa > 0$ ,  $u \in \mathbb{Z}_p$ , and we obtain  $\frac{a}{b} = -1 - \frac{1}{p^{\kappa}u}$ ,  $v(\frac{a}{b}) \leq -\kappa$ . Converse is also true. Finally, for  $\kappa \geq 1$ ,

$$v(\frac{a+b}{b}) \le -\kappa \Leftrightarrow v(\frac{a}{b}) \le -\kappa,$$

and

$$v(\frac{a}{a+b}) \le -\kappa \Leftrightarrow v(\frac{a}{b}+1) \ge \kappa.$$

Therefore, we have the recurrence relations:

$$\begin{cases} F_{n+1}(i,\kappa) = \frac{1}{2}F_n(\tau(i,\kappa)) + \frac{1}{2}F_n(\sigma(i,\kappa)), & \text{if } (i,\kappa) \text{ is admissible,} \\ F_{n+1}(1,\kappa) = \frac{1}{2}F_n(0,\kappa) + \frac{1}{2}G_n(0,-\kappa), & \kappa \ge 1, \\ G_{n+1}(0,-\kappa) = \frac{1}{2}G_n(0,-\kappa) + \frac{1}{2}F_n(-1,\kappa), & \kappa \ge 1. \end{cases}$$
(5)

Thus, we have an infinite matrix  $\mathcal{A}$ , which is a change matrix for the Markov chain. If  $\mathbf{v}_n$  is an infinite vector-column of  $F'_n$ 's and  $G'_n$ 's, then  $\mathbf{v}_{n+1} = \mathcal{A}\mathbf{v}_n$ , and, as before,  $\mathbf{v}_n = \mathcal{A}^{n-1}\mathbf{v}_1$ . It is direct to check that

each column also contains exactly two nonzero entries  $\frac{1}{2}$ , or one entry, equal to 1. In terms of Markov chains, we need to determine the classes of orbits. Then in proper rearranging, the matrix  $\mathcal{A}$  looks like

$$\begin{pmatrix} \mathbf{P}_1 & 0 & \dots & 0 & \dots \\ 0 & \mathbf{P}_2 & \dots & 0 & \dots \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mathbf{P}_s & 0 \\ \vdots & \vdots & \dots & 0 & \ddots \end{pmatrix},$$

where  $\mathbf{P}_s$  are finite Markov matrices. Thus, we claim that the length of each orbit is finite, every orbit has a representative  $G_*(0, -\kappa)$ ,  $\kappa \geq 1$ , the length of it is  $p^{\kappa} + p^{\kappa-1}$ , and the matrix is recurrent (that is, every two positions communicate). In fact, from the system above and form the expression of the maps  $\tau(i, \kappa)$  and  $\sigma(i, \kappa)$ , the direct check shows that the complete list of the orbit of  $G_*(0, -\kappa)$  consists of (and each pair of states are communicating):

$$G_*(0, -\kappa),$$
  

$$F_*(i, \kappa) \quad (i = 0, 1, 2, ..., p^{\kappa} - 1),$$
  

$$F_*(p^{-\lambda}u, \kappa - 2\lambda) \quad (\lambda = 1, 2, ..., \kappa - 1, u \in \mathbb{N}, u \not\equiv 0 \mod p, u \le p^{\kappa - \lambda})$$

In total, we have

$$1 + p^{\kappa} + \sum_{\lambda=1}^{\kappa-1} (p^{\kappa-\lambda} - p^{\kappa-\lambda-1}) = p^{\kappa} + p^{\kappa-1}$$

members in the orbit. Thus, each  $\mathbf{P}_{\kappa}$  in the matrix above is a finite dimensional  $\ell_{\kappa} \times \ell_{\kappa}$  matrix, where  $\ell_{\kappa} = p^{\kappa} + p^{\kappa-1}$ . For  $\kappa = 1$ , the matrix  $\mathbf{P}_1$  is exactly the matrix of the system (4). As noted above, the vector column  $(1, 1, ..., 1)^T$  is the left eigen-vector. As in the previous theorem, it is straightforward to check that this matrix is irreducible and acyclic (that is, the entries of  $\mathbf{P}_{\kappa}^n$  are strictly positive for sufficiently large n). In fact, since by our observation, each two members in the orbit communicate, and since we have a move  $G_*(0, -\kappa) \to G_*(0, -\kappa)$ , the proof of the last statement is immediate: there exists n such that any position is reachable from another in exactly n moves, and this can be achieved at the expense of the move just described. Therefore, all entries of  $\mathbf{P}_{\kappa}^{n}$  are strictly positive. Thus, the claim of the theorem follows from the lemma above.

Acknowledgements. The second author thanks Jürgen Sander and Jan-Hendrik de Wiljes for their interest and valuable remarks.

#### References

- N. CALKIN, H. WILF, Recounting the rationals. Amer. Math. Monthly 107 (2000), 360–363
- [2] A.J. COLE, A.J.T. DAVIE, A game based on the Euclidean algorithm and a winning strategy for it. *Math. Gaz.* 53 (1969), 354-357
- [3] R. BIRD, J. GIBBONS, D. LESTER, Functional pearl: enumerating the rationals. J. Functional Programming 16 (2006), 281-291
- [4] R. GRAHAM, D. KNUTH, O. PATASHNIK, Concrete Mathematics: a foundation for computer science. Addison-Wesley 1990
- [5] S. HOFMANN, G. SCHUSTER, J. STEUDING, Euclid, Calkin & Wilf Playing with rationals —, *Elem. Math.* (to appear)
- [6] S. KARLIN, A first course in stochastic processes. Academic Press, 1968
- [7] D.H. LEHMER, On Stern's diatomic series, Amer. Math. Monthly 36 (1929), 59-67
- [8] M. NEWMAN, Recounting the rationals, Continued. Credited in Amer. Math. Monthly 110 (2003), 642–643
- [9] A. YA. KHINCHIN, Continued fractions. The University of Chicago Press, 1964
- [10] B. REZNICK, Regularity properties of the Stern enumeration of the rationals. Preprint available at http://de.arxiv.org/pdf/math.NT/0610601.pdf?front
- [11] N. SLOANE, S. PLOUFFE, The On-line Encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/
- [12] M.A. STERN, Über eine zahlentheoretische Funktion. J. reine angew. Math. 55 (1858), 193-220

Giedrius Alkauskas, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania giedrius.alkauskas@maths.nottingham.ac.uk

Jörn Steuding, Department of Mathematics, Würzburg University, Am Hubland, 97 218 Würzburg, Germany

steuding@mathematik.uni-wuerzburg.de