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Some Binary Partition Functions

BRUCE REZNICK

Dedicated to Professor Paul T. Bateman on the occasion of his retirement

1. Introduction and Qverview

For d > 2, the d-th binary pariition function, b(d;n), is the number of
representations

[e0]
n:Zeg?‘,c;G{O,l,...,d-—1}; {1.1)
i=0
the usual (Buler) binary partition function is 8{o0; n) = dlim b(d;n). This
—5 0T
paper explores various arithmetic and analytic properties of the &(d;n})’s.
For smalt values of d, b(d; ») is familiar:

b(2;n) = 1 (Euler [E1, p.333]), (1.2)(1)
b(3;n) = s(n + 1) (Thm. 5.2), {1.2)(ii)
b(4;1) = |n/2] + 1 (Problem B2, 1983 Putnam [KAH]). (1.2)(iii}

In (ii}, s(n) denotes the Stern sequence; no other b(d;n)’s appear in {S1).
Euler [E2, p.288] defined b(co;n) and computed its values for n < 37.
Somie recurrences for b(co;n) and, in effect, b(2"; n) were studied by Tan-
tueri {T1,T2,T3] in the 1910s. In 1940, Mahler [M] established that
log b(oo; n) ~ (logn)?/(log4); this asymptotic estimate was refined by de
Bruijn [B] in 1948. Knuth [K] also investigated the growth of log 5(o0; n)in
1966, and gave some other recurrences for b{oo; ). In 1969, Churchhouse
[C4] discussed the behavior of b(oo;n) {mod 27}. Let 12{m) denote the
largest power of 2 dividing m. Then 2 divides b{oo;n) for n > 2, 4 divides
b{oo; n) if and only if #a(n) or va(n ~ 1) is positive and even, and 8 never
divides b{co; n). Churchhouse conjectured that, for all even m,

1a(b(00; 4m) — b(c0; m)} = [(3ep(m) + 4)/2]. (1.3)
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452 BRUCE REZNICK

This conjecture was proved by Rédseth [R5], Gupta (thrice) [G1,G2,
G4] and generalized by Hirschhorn and Loxton [HL] in 1976.

The m-ary partition function is defined by replacing 2 by m in (1.1)
and eliminating the restriction on the ¢;’s. Mahler and de Bruijn actually
studied the asymptotics of the m-ary partition function. The proof of (1.3)
was generalized to m > 2 by Rodseth, Gupta [G3], Andrews [A1] and
Gupta and Pleasants [GP]. Restricted m-ary partition functions (¢; =
for i > t) also appeared in Gupta and Pleasants, and Dirdal [D1,D2],
Analysis of their generating functions shows that they are equal to the
number of m-ary partitions with ¢; < m' for all ¢ (see Thm. 3.2(i) for
m = 2.} A nice summary of this work can be found in Ch. 10.2 of [A2],
and its exercises.

Here is the plan for the rest of the paper.

In section two, we give an infinite product representation for Fy{z),
the generating function of b(d;n). We derive some simple relationships
among the Fy's and deduce the resulting recurrences on b(d;n), #(2d;n)
and b(oo; n), which often depend on the parity of d and n. Clearly, b(d; n)
is non-decreasing in d; the monotonicity in n depends on the parity of
d. We show that b(2k;2r) = b(2k;2n + 1) < 5(2k;2n + 2) and that
b(2k + 1;2n) > b(2k + 1;2n + 1) < b(2k + 1;2n + 2), with strict inequality
in the first case if n > k. In other words, b(2k; n) is an increasing staircase,
and b(2k + 1; n) starts that way but eventually zigzags. By reducing Fy(z)
in (ZZ /2 Z)[[z]], we show that b(d; n) is odd if and only if n is congruent to
0 or 1 (mod d). We conclude the section with an alternate interpretation
of (d; n), which was suggested to us by Richard Stanley.

In section three, we discuss the special case d = 2°. We show that Fu-(#)
is rational, and that 5(2";n) is the number of partitions of n into powers
of 2 < 2"l We give a closed form for b(27;2""1s+¢),0 <f <21 - L
it is a polynomial in s of degree r — 1, in fact, a linear combination of
(""::i_-’)’s, 0 € j < r—1. Each such polynomial has the same leading
coefficient, so (27;n) ~ (27 (*=1/2(» — 1)1)~1n"~1, We conclude the section
by reinterpreting some early work of Tanturri on 4(27;n).

In section four, we consider the asymptotic growth of b(2k; n). We show
that b(2k; n) = ©(n (%)) for A(2k) = log, k (that is, there exist o > 8> 0
and ng so that an*(2¥) > b(2k;n) > An*M2H) for n > n;y.) We also show
that b(2k + 1;n) is not ©(n*(2¥+1)) for any A(2k +1). (The previous result
implies that A(2k 4 1) = logy(k + 1), so 5(2k + 1; 2"} would be ©((k + 5)")-
However, the recurrences imply that b(2k + 1;2") satisfies a monic linear
recurrence in r with integer coefficients, and d(2k + 1;2") = ©(r") implies
that r is an algebraic integer—see Cor. 1.7.) We also compute p;(2k + 1) 80
that, for suitable oy > 0, ayn#1(2¥+1) > b(2k + 1;n) > aon#*(2k+1), Since
M2k +2) > pi(26 4+ 1) for & > 1 and py(2k + 1) > A(2k) for k& > 2, it
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follows that b(d + 1;r)/b(d;n) — oo for all d > 3.

In section five, we use known properties of the Stern sequence to give
more specific information about the growth of 5(3; n) and (6; »). We show
that p1(3) and pa(3) are best possible, and that n=*($)4(6;n) does not
converge, even though b(6;n) = ©(n*(®), This is, in effect, a result of
Carlitz [C3], which was suggested by a question of P. T. Baternan.

We conclude, in section six, with acknowledgments and some open ques-
tions, and, in an appendix, give a table of b(d;n) for 0 < n < 32 and
2<d<9andd=co.

We shall repeatedly use a familiar result on linear recurrences with con-
stant coefficients, which goes back to Lagrange and Euler.

Linear Recurrence Theorem. Suppose

p(t) =ttt 4. e, =" H(‘l =M, (1‘4)

i=1

where ¢; €0, 0 £ A; €@, v; > 1 and the A;’s are distinct, and suppose (z,,)
is a sequence satisfying the recurrence

Tngr +C1Tngr_1+ oz =0,n > 0. (1.5)
Then there exist polynomials h;, of degree r; — 1, so that
L
Tp = Zh;(n)/\:-' for n>k. - (1.6)
i=1

The simplest proof of the Linear Recurrence Theorem involves generating
functions and partial fractions; one version is in [R2].

Corollary 1.7. Keeping the previous notation, suppose (¢,,) is a real se-
quence satisfying (1.5) and for some 7 > 0, &, > 0 and all n > ng,

aTp 2 &n 2 Pn. (1.8)
Then 7 = maz|X;| and p(r) = 0. If p € ZL[t], then 7 is an algebraic integer.
Proof: Let M = max{|};|}, let d = max{degh; : [A;| = M} and reindex

so that A; = M¢;, |¢;] = 1, and degh; = d precisely for 1 < j < k. Then,
hi(n) = ajn? + o(n?), where a; £ 0. Finally, let

H(n) =Zaj€;’;. (1.9)
i=1
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Then by the Linear Recurrence Theorem,
2y = H(nndM™ 4 o(nfM"). {1.10)

fiwl=1w#1, then

w N+l _
Izw"l- I 1“'))] < Iwill < 0. (1.11)

Since |H(n)| < Bloy] = A, and

N N
Sor= (S xrSon(Se7)

izl j=1 J#t n=l
= B2N + O(1),

lim |H(n}| > B > 0. Thus for all ¢ > 0, there are infinitely many n with

(A+ M > 2, > (B - )n?M". (1.13)

It follows from (1.8) that d = 0 and M = 7.
Suppose p(7) # 0, then ¢; # 1 for all §, and by (1.11),

1ZH(n)|=iZa Z

n=l j=1

»

Z Aol ¢ . (1.14)

ll

But by (1.8), lim H(n) > 8> 0. This is a contradiction, so p(7} =

=00

2. Basic Properties of 4(d;n)

The following infinite product formulas for the generating functions of
b(d; n) and b(co; n) are immediate from (1.1):

[+4] o A .
Fale) = Y b(d;n)z® = [J(1 + 22 +- -+ 214-17)

n=0 i=0
] - pd2
=H P (2.1
j=0
o0
Foo(e) =[] 1= (2:2)

=0

SOME BINARY PARTITION FUNCTIONS 455

The following theorem summarizes some elementary manipulations of the
generating functions in (2.1) and (2.2).

Theorem 2.3.

(i) Fa(#)Foo(2%) = Foo(2),

(ii) Fa(x) = (1 - 2)"1 Fi(z?),

(i) (1~ z)Fa(x) = (1 — z9)Fa(2?),
(iv) Filz) = (1 — 2*)Fa().

Theorem 2.3 leads to many recurrences. For convenience, we shall con-
strue b{d; n) to be 0 when n is negative.

Theorem 2Z.4.

In/d}
) bloo;n) = 3 b(d;n — dr)b(oo;r),

r=0

inf2)
(i) baksn) = ) blkid),

1=
(ifi) b(2k: 20) = b(2k; 20 4 1) = 5 b(Zksn — ),

J=0
(iv) B2k + 1;2n) = i b(2k + L;n — ),
§=0

{v) b(2k + 1;2n+ 1)=kf::l b2k +1;n - 7),
(vi) b(2k; n) = b(k; m) + b(2k n—k),
{vii) b(2k; n) — B(2k;n ~ 2) = b(k; [n/21),
(i) b(2k + 1:20) — b(2k + 1,20 — 1) = b(2k + ;)
(ix} b2k + 1 2n) b(2k +1,2n41) =82k + ;n~ k),
(x) b(2k;n) = E b(k;n — rk).

r==0

Proof: Expanding Thm. 2.3(i), we have

f: b(d; mjz™ i bloo; P2 = i b{oo; n)z"; (2.5)
m=0 r=0 n=0

part (i) follows from comparing the coefficient of 2” on both sides of (2.5).
Similarly, Thm. 2.3(ii} expands to

For(z) = f: b2k;n)z” = (14427 +--) f: b(k; ), (2.6)

n=0 i=0
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which implies (ii). Thm. 2.3(ii1) is equivalent to:

o o
Fyo) =Y bdin)e™ = (L +z+ -+ 281 5 b(d;iYa™. (27)

n=0 =0
The term x® occurs on the right when n = j + 2, where 0 < § < d— 1, 80
b(d;n) is the sum of those b(d;n — j)'s in which n — j is an even integer.
Parts (iii) through (v) arise by considering the varying parities of d and n.
We obtain (vi) by writing out Thm. 2.3(iv). Finally, (vii), (viii}, (ix) and

(x) resuit from iterating (ii}, (iv}), (v} and (vi). 1

Several comments about these recurrences are in order. Since b{c0;0) =

1, we could use Thm. 2.4(1) to define b(d; n) recursively. Also, when r =2,
this becomes (by (1.2)(i)),

bloo;n) = B(oo; 0) 4 - - - + b{oo; [n/2]), (2.8)
This equation is in Tanturri [T2], but also follows easily from
b(oo; n) = b(co, n ~ 2} + bloo; [n/2]), (2.9)

which is implicit in Euler [E2). Churchhouse iterated (2.8) to express
b(o0; 27n) in terms of {b{oo;j) : 0 < 7 < n}, and generalizations of this
idea represent much of the literature on binary (and m-ary)} partitions.

There are combinatorial proofs for many of these recurrences. For exam-
ple, if ¢; € {0,...,2k — 1}, then ¢; = 2v; + 75, where v € {0,...,k -1}
and 7; € {0,1}. So, n = 3.2 = 2(3v;2) + (3 0527), and for every
partition n = 2s + ¢, there are d(k;s) - 1 ways of writing s = 3" 1,27 and
t =5 n;2; this proves (ii).

We turn to the monotonicity properties of b(d; n).

Theorem 2.10.

(0 b(d;n) < B(d+ L3m),
(i1 1< bdim),

(1ii) b(d; n) = b(oo;n) if d > n,

(iv) b(d;n) = blco;n) ~bloo;n—d) ifn > d > n/2.

Proof: Any solution of {1.1) satisfies 0 < ¢ < d — 1 < d, whence (i); (ii)
follows by induction and (1.2)(1). For (iii) and (iv), we use Thm. 2.4(i):
b(co;n) = b(d; n)b(co; 6) + b(d; n — d)b{oo, 1)
+ b(d; n ~ 2d)b{o0; 2) - . (2.11)
Recall that b{co; 0) = b(o0;1) = 1. If d > n, then (2.11) implies (iii}, if n =

d > n/2, then b(co; n} = b{d; n) +b{d; n~d), but b(d; n—d) = b(co; n—d) by
(i1i) since d > n ~—d, thus (iv). These can also be proved combinatorially. B
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Theorem 2.12.
(1) b(2k; 2n) = b(2k; 2n + 1),
(i) B(2k; 2n) > b(2k; 2n — 1),
(iif) b2k +1;2n) > b(2k+1,2n~ 1),
(iv) b(2k + 1;2n) > b(2k + 1,2n + 1), with“>" if n > k.

Proof: Parts (i), (iii} and (iv) follow from Thm. 2.4(iii), (viii) and (ix).
For (ii), Thm. 2.4(vii) implies that

b(2k; 2n) — b(2k; 2n — 1) = b(2k; 2n) — b(2k; 2n — 2) = b{k;n). W -(2.13)

The generating functions allow us to determine the parity of b(d; n).

Thecrem 2.14.

bdin)=1 (mod2)<=n=0,1 (modd)

Proof: We reduce (2.1) (mod 2), viewing Fy(x) as an element of

(% [272)((=]]:

- d
Fa(z) = H ¢ a;z:) H ((11:1;)) (2.15)
J'-()

Since [J(1+2%) = (1—2)~! = (1+2)Y in (Z /2 Z)][2]), (2.15) becomes

OO

X _ 14z . d 2d
;b(d,n)z" = {3a =4+t +) B (2.16)
This is consistent with (1.2): 8(2; n) = 1is always odd; b(3; n) is even when
n is a multiple of 3 (Stern); b(4;n) iz odd when [n/2] is even. There is a

vaguely similar formula for any prime p, based on the identity (¢(2))’ =
w(xP) for ¢ € (Z /pZ)[[z]]. Theorem 2.3(i) implies that:

Fp(z)(Feo(2))*~* =1 (mod p). (2.17)
Let v(m) denote the number of 1's in the usual (unigne) binary repre-

sentation of m. Richard Stanley [S2] has made the following interesting
observation to the author.

Theorem 2.18. Suppose w is any primitive d-th root of unity. Then,

by ) = J () B (e, (219)

-
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where the sum is taken over all (ordeted) sums n = m; + - -+ mg_y.

Proof: For all z,

oG oo

3 2 = [T+ 22%). (2.20)

n=0 i=0

Sinee w is a primitive d-th root of unity,
1427 +22% 4. 20 1'[(1 ~ wlz?) (2.21)
hence by (2.1), (2.20) and (2.21),

OO
Fd(t) = H(l + 2 +22% 4. x(,,-_l).y')
j=0

oo d-1 d-1 oo (2’22)
— H H(l wtzﬂ’) — H E(_wt)v(m)z
F=02=1 =1 m=0

from which (2.19) follows. I

Let d =3 and w = exp(4ni/3). Then ¢ = —w = exp(ri/3} is a primitive
sixth root of 1, as is —w? = e~1; we have (m1, mz) = (j,n — j), and

b(3;n) = ZEU(J')""(""J')_ (2.23)

=0

It follows that the positivity of 5(3;n) reflects upon the distribution of

{v(j) — v(n — j}} (mod 6).

3. The Case d = 27
If d = 27, then the infinite product in (2.1) telescopes:

r=—1

For(z) = Zb(?" n)z" H ——-_% (3.1

n=0 j=0
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Theorem 3.2,
(i) b(2";n) is the number of partitions of n into 1, 2,22,...,2"~L,
2r—1
(if) (1PN n -5y =0 forn > 1.
i=0
Inf27)
(iif) b(2H4n) = ): b(2rin — § - 27)5(2%; ).
Proof:

(i) This is immediate from (3.1).
(ii) Note that

27=1

(For(2))™ = H(l—zz’)~ Z( 1)*®)gk, (3.3)

j=0

{cf. (2.20)); (ii) follows upon multiplying both sides of (3.3) by Far(x).
(iii} Manipulation of (3.1) {or iteration of Theorem 2.3(ii) with k = 2°)
shows that Fyrq,(x) = Far(x)Fas(z?"), which leads directly to (iii). i

We remark that (i) connects 5(d; n} with the literature on restricted bi-
nary partitions. We may use (ii) with the Linear Recurrence Theorem to
describe a closed form for b(2"; n). By (3.3), {1.6) holds with the };’s equal
to the 2¥-th primitive roots of unity, 0 < u < r — 1; for such a A;, h; has
degree r — 1 —u (see Thm. 3.6.) Finally, if r or s equals 1, then (iii) reduces
to Thm. 2.4(ii) or (x). A version of (iii) seems to be in [T2,T3].

We now introduce an important reparameterization for §(27;nj. For 0 <
F<o-1 1, et

Flr,t)(s) = b(27; 27" 1s + 1). (3.4)

Using our recurrences, it is easy to compute f(r;t) for small r.

J(1,0)(s) = b(2;8) = 1, (3.5)(i)

F(2,0)(s) = b(4;26) = F(2,1)(s) = b(4;2s + 1) = s+ 1, (3.5)(ii)

£(3,0)(s) = b(8;4s) = F(3; 1)(s) = b(8; 45+ 1) = (s + 1)%,(3.5) i)
F(3,2)(s) = b{8; 45 + 2) = f(3;3)(s) = b(8;4s +3) = (s + 1)(s + 2).

(3.5)(iv)
Theorem 3.6. Forallr>1,0<t <21~ 1, and s > G,
=2 g4r—-1—7j
0 = Lo (171 7Y), (37
j=0
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where the a;(r,1)’s are defined recursively by

ag(1,0) = ao(2,1) =1, (3-8)(i)
& ar-1_7

ai{r+1,2k)=a;(r+1,2k+1) = Z a;(r,t) + z aj-1(r,t), (3.8)(ii)
t=0 t=k41

and we take a_.1(r,t) = a,-1(r,t) = 0 in (3.8)(ii) when appropriate.

Pro.(.)f: Clearly, (3.7) holds for » = 2; assume it holds for . Theorem
2.4(ii), rephrased and applied to B(27+1;2"s + 1) = f(r + 1,1)(s) gives:

2T Ystk
Fr+1,26)(s) = flr+ 1,2k + 1)(s) = 3 B(274)
N =0 (3.9)
= ZZ Jor D@+ Y0 3w,
t=0 u=9P =k+i u=D

By the induction hypothesis and a familiar binomial identity, we obtain:
Hr 4+ 1,2k)(8) = f(r + 1; 2k + 1)(s)

Y Ta o(**121)

t=0 u=0j5=0

2711 s—19p-2 1
+ ¥ Y wen(*t 7Y

t=k41 u=0j§=0

kE r—-2
=2 at(*T ) (510
t=0j=0
2r=1_1y-2
Z za‘?(rt)(3+r 1—j )
t=k+1 j=0
27~1 .
Z (Za:(r H+ 3 af_l(r,t)) (”:“’).
t=D t=k41

It follows from the last expression and {3.8)(ii) that (3.7) holds for r+1. 1

Since ag(r,t) = b(oo;1), it seems unlikely that there is a closed-form
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expression for the a;{r,t)’s. We can rephrase (3.5) in these terms:

1,006) = (§), (3.11)00)
12,00 = rew = ("1, (3.11)Gi)
o =sevw="17)+('}"),  ewa
£(3,2)(s) = £(3:3)(s) = 2(“’ 5 2)- (3.11))

Corollary 3.12.
(i} Forr>1, f(r,t)(s) is a polynomial in s of degree r — 1 with leading
coefficient 20— 1(r=2/2{(r _ 1)1}~1,

. . Hn) 1
(i) Jim, nr=1 - 2rr-D2(p — 1)1

Proof:

(i) Each (""’" =4) is a polynomial in s of degree r—1 with leading coeffi-
cient {(r—1)1}~1. An easy induction shows that 5_; a;(r, 1) = 2" -2)/2,
{ii) Let u=r—1 and fix {. Forn € {27-!'s+1:0 < 5 < 00}, we have

n=Ub(275n) = (2%s + )~ {204V 1sM 4 o(s)). (3.13)

Since u(u — 1)/2 — u® = —r(r — 1}/2, (3.13) implies that (ii) holds for n in
every sequence {27~!s +t}, and so for n in general. I

One can also prove (ii) by looking at the coefficient of (1 — 2)~("~1) in
the Laurent series for Fy-(z) at z = 1.

A. Tanturri wrote a series of papers [T1,T2,T3] during World War 1
on binary partitions. His formulas are written in the now obscure symbolic
notation of Peano, and, perhaps, have not become generally known for that
reason. In {T2], he defines D(2"; n) to be the number of partitions of n into
powers of 2 such that the largest is 27. There is a clear bijection between
these partitions and the pariitions of n ~ 2r with parts taken from the set
{1,2,...,2"}. Thus, by Thm. 3.2(i),

D(2Mn) =827t 0 - 27). (3.14)

(This also follows from D{2"; 1) = §(27+1; n) — b(2"; ») and Thm. 2.4(vi).)
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Proposition 3.15. (Tanturri)

i) YD) =3 6@ 0 - 27) = b(oo; n),

r=0 r=0

(i) Z( ~1)"D(2";n) = Z( 182+ n—-27)=0 for n>1.

r=0

Proof: Since every binary partition of n > 1 contains a largest power of 2,
(i) is immediate. For (ii), let £(2";n) denote the number of partitions of n
into powers of 2, in which 27 is the largest power and occurs exactly once,
By replacing the unique 2" with two 2"~!’s, we obtain a partition of n in
which the largest power is 271, which occurs more than once. Conversely,
in any such partition, two 2/—"’s may be coalesced into one 27. Thus, for
r>1, B2 n)=D(2""1;n) - E(2"—1;n), and for n > 2,

E( 1) D(27;n) = Z( 1 (E(2;n) + E(27H n)). (3.16)

r=0

Since E{2";n) = 0 for r > logyn, the sum in (3.16) converges; since
E(1;n) =0 for n > 2, the sum is zero. Il

4. The Growth of b(d; n)

In this section we discuss the growth of b{d;n) as n — oo; there is a
dichotomy depending on the parity of d. We have seen that b(2";n) ~
¢ -n"~1, This generalizes partially to b(2k;n) = ©(n'°8:¥), but no such
relation holds for 6(2k + 1;n). These results were announced in [R1].

Here is a sketch of the argument. We define intervals I, = I.(d) so that,
if 20, 2n+1€ Iryy, thenn—j € I, 0 < j < (d —1)/2. We then use the
recurrences of Thm. 2.4 (iii), (iv), (v) to estimate b(d;n) on I, ;1 in terms
of b(d;n) on I.. Finally, we turn these estimates into bounds in terms of
n*. We need two straightforward lemmas.

Lemma 4.1, Forr > rg = [log;d], let I, = L(d) = [2" — (d— 1), 2"+ If
2n or 2n+ 1 belongs to I, 41, then n— j belongs to I, for 0 < § < (d—1)/2.

Proof: By hypothesis, n < 27t1 and

n—§2 2 —(d—1)/2-j>2 —(d-1). 1 (4.2)
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Lemma 4.3. Suppose there exist 71, 712, &, v > 0 so that for n € I,
r 2 ro,
ot > bd;n) > 1. (4.4)
Then there exist new constants &; > 0 so that for all sufficiently large n,
510187 > b(d;n) > 6on!o87. (4.5)

Proof: If # > rg+ 1, then 2" — (d — 1) > 21, 50 if n € I, then ot >
n> 271, Since p = (27)'°82# for any p > 0, it follows that

pnio82 s = (2n)\9Ba? > (27)°8:7 > (n /2)l0827 = p~1ploBs 2, (4.6)
Thus, (4.6) with p = o and T, and (4.4) combine to give (4.5).
Theorem 4.7. For all k > 1, 5(2k; n) = ©(n*(»)), where

A2k) = logy k. (4.8)
Proof: We must find @ and # > 0 and ng so that
an*@¥) > p(2k; 1) > e ) n > ny. (4.9)

By Lemma 4.3, it suffices to show that for r > ro there exist 4; > 0 s0 that:

k" > b(2k;n) > 12k" for nel. (4.10)

Let ) .
M(2k;r) = max{b(2k;n) : n € I}, (4.11)(1)
m(2k;r) = min{b(2k;n) : n € L.}, (4.11)(ii)

In Thm. 2.4(iii), if the argument on the left hand side comes from Iy,
then the arguments on the right hand side come from I, by Lemma 4.1.
Thus, for n € I 41:

kM(2k;r) > b(2k;n) 2 km(2k;r). (4.12)
Taking the maximum and minimum in (4.12) for # € Ir41, we have
EM(2k;r) > M(2k;7 + 1), (4.13)()
m(2k;r + 1) > Em(2k;r). (4.13)(ii})
It follows from (4.13) that, for n € I,

M(2k;ro)k™"" > M(2k;r) > b(2k; n) > m(2k;7)
> m(2k; ro )k, (4.14)

-
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This is an inequality of shape (4.10), which completes the proof.

One fundamental difference between the even and the odd case is that,
in Thm. 2.4(iv) and (v), the number of terms in the recurrences for
b(2k + 1;2n) and b(2k + 1;2n + 1) depend on the parity of n and &. The
proof of the following theorem is quite oblique, and a more direct proof
would be desirable.

Theorem 4.15. There do not exist v, o and § > 0 s0 that forn > N,
an” > b(2k + 1;n) > Bn’. (4.16)
Proof: Suppose to the contrary, that (4.16) holds, and let
N-1
R=%" b2k +1j). (4.17)
=0
Then by Thm. 2.4(ii), for n > N, we would have
n kil n
Read 23 b2+ =b(4k+22m) 2 R+8> 5. (4.18)

f=N i=0 j=N

By the usual estimates for 3~ ¥, (4.18) implies that, for suitable constants
¢; and sufficiently large n,

e +epn’ T > b4k 4 2;20) > e3 + cqn? L (4.19)
In view of Thm. 4.7, it follows that

v+ 1= A4k + 2) = log,(2k + 1). (4.20)

Thus, for ¢ sufficiently large, (4.16) and (4.20) imply that
afk+ 1) 2 B2k +1;2) 2 Ak + 5)' (4.31)

Let M = Mag4y = [myj], 0 €4, § € 2k denote the matrix in which

my =1 if [¢/2] <5< if2]+k, my; =0 otherwise. (4.22)
Thus, the even rows of M contain a block of (k + 1} 1’s and the odd rows
contain a block of & 1’5, and these blocks sidestep their way from northwest

to southeast. Define the (2k + 1)-column vector V; by:

Vi = (B(2k + 1;21),3(2k + 1520 — 1), ..., 6(2k + 1; 2V — 2B))T.  (4.28)
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Then by construction, and Thm. 2.4 (iv}, (v},

Viei =MW, 120 {4.24)
Hence for ¢ > 0,
Vi = MWL (4.25)
Let
p(t) = detfz] - M) = 22t 4 oo™ o begpy (4.26)

denote the characteristic polynomial of M. Then p € Z[z] and, by the
Cayley-Hamilton theorem, p{M) = 0. Thus, for £ > 0,

ML Lo MU L oM =0 (4.27)
It follows from (4.25) that for £ > 0,
Vigortr + €1 Vegor + -4 cop1 Vi = (8,0,...,0). {4.28)
Let z; = b(2k + 1;2'); taking the first component of (4.28), we obtain
.it.,.gk“ +e12epor + - 4 coppr2y =0 for £ 2> 0. (4.29)

That is, (1.5) holds for (z;). But by Cor. 1.7, (4.21) and (4.29) imply that
k+ 1 is an algebraic integer. This contradiction completes the proof. §

In any event, the monotonicity of b(d;n) in d implies that, for suitable
constants and sufficiently large n,
anlo&(+0) > yok + 2:n) > b(2k + 1;0) > b(2k;n) > fnloEat. (4.30)
We can improve on (4.30) by using a lemma, which we do not give in its
greatest generality.

Lemma 4.31. Suppose M = {a;;] is a real 2 x 2 matrix, a;; > 0, with
eigenvalue X > 0, and associated eigenvector (vy, v2), v; > 0. Suppose for
all r > 0, the sequences (f;(r)) and (h;(r)) satisfy the inequalities:

fi(r) = fal(r) > 0, (4.32)(i)
H(r+ 1) < enfi(r) + an falr), (4.32)(ii)
fo(r +1) S arnfi(r} + annfo(r); (4.32)(iii)
ha(r) > ha(r) > G, (4.33)()
hi(r + 1) 2 e11ha(7) + az1ha(r), (4.33)(ii)
hg(!"-l— 1) > alghl(i‘) + agghg(r). (433)(111)
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Then there exist ¢ > § and ¢’ > 0 so that for all r > @,

eA” 2 fi(r) 2 folr), (4.34)
h1(l") 2 hz(?‘) _>_ A", (435}

Proof: First, we take the (vy, v2) linear combination of (4.32}(i1) and (iii),
which preserves the inequality, Since {v;,v2)7 is an eigenvecior,

vifi(r + 1) + w2 fa(r + 1)

< (v1831 + vaar2) f1{r) + (me21 + vaan)fr(r) (4.36)
= Mva fi(r) + vafolr))
Since fa(r} > 0, (4.36) iterated r times implies that
v1 fi{r} € vo filr) + va fo{r) < (v1 f1{0) + v2 f2(0)) 1. {(4.37)

Thus, (4.34) holds with ¢ = f1(0) + v7 vafo(0) > 0. Similar reasoning
applied to (4.33) leads to

vihi(r) + vaha(r) 2 (uehe(0) + v3hz(0))X", (4.33)
and, since h1(r) > ha(r), (4.38) implies that
(v1 + v2)ha(r) > {v1 + v2)Ra(0)A". (4.39)
By (4.33)(iii) and {4.39),

ha{r + 1) 2 ay2hy (1) + aghy(r) 2 ai2hi(r) > a1phe(0)A". (4.40)
Thus, (4.35) holds for ¢’ = min{hz(0), a12h2(0)A "1} > 0. §
Theorem 4.41. There exist ju;(2k+1) and @ and 8 > 0 so that for n > ng,

an® (0 5 pok 4 1;n) > An#a(2b+1) (4.42)

Moreover,
A2k +2) > (20 + 1),k 2> 1 {4.43)(i)
a2k + 1) > A(2k), k > 2. (4.43)(ii)

Proof: We mimic the proof of Thm. 4.7. Let

M2k + 1;7) = max{b{(2k + 1;n) : n € I,, n even}, (4.44)(i)
Mo(2%k + 1;7) = max{b(2k + 1;n) : n € L., n 0odd}, (4.44)(ii)
m®(2k + 1;7) = min{d(2k + 1;n} : n € I, n even}, (4.44)(iii)
m®(2k + 157} = min{b(2k + L;n) :n € L, n odd}. {4.44)(iv)

S S
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By Thm. 2.12(jii) and (iv}, {2k + 1;2m) > &(’ S
» &
Me(2% + 1;0) > Me( ¥ & ur),
S 4590
me(2k + 1;7) > m’ G 4.
As before, (4.42) follows if we can find ¢ . @S}(ii)

it > M2k +1;7),
m?(2k + L;r) > e207.

We divide into two cases, depending on k {mod 2).
First suppose & = 25, s > 1. Then, Thm. 2.4 (iv), (v) becomes

bds+ 1;2n) = b(4s + 1;n) + - -+ b(ds + 1;n— 25), {4.47)(3)

Bds+ 1;2n4 D)= b(ds + Lin)+ -+ 8{ds + Lin~ (25—~ 1)).
(4.47)(ii)

There are 25+ 1 (1 —~ j)’s on the right hand side of (4.47)(i), either s+ 1 or
s of them are even, and the rest odd. Taking the most extreme cases, we
obtain the following estimates for 2n € Iyy:

b(4s + 1;2n) < (s + DM *(4s + L;r) + sM*(4s + L;r), (4.48)(3)
b{ds + 1;20) > smt{ds + ;7) 4 (s + Vm’(4s + Iir). (4.48)(it)

Similarly, there are 2s (n — j)’s on the right-hand side of {4.47)(ii), so s of
them are even and s are odd, and

bds+ 1;2n4 1) < sMe(4s + L;v) + sM°(4s + 1;r),  (4.49)(0)
b(4s +1;2n 4 1) 2 sme(ds + L;7) + sm®(4s + Lir).  (4.49)(i1)

In (4.48) and (4.49), we take the maximum over 2, 2n+1 € L4z in (i) and
the minimum in (i) and, in view of (4.45), obtain two systems like (4.32)
and (4.33), (with f1, f2 = M*®, M° and by, Rz = me, me):

Me(ds + ;04 1) < (s + DMe(4s + Lr) 4+ sM?(4s + 157), (4.50}(1)
Mo(4s 4+ Lir 4+ 1) < sM(ds+ ;r) + sM°(ds + Li7); {4.50)(i1)

mt(ds + ;7 +1) 2 smf(4s + ;) + (s + Dm(ds + L5 ), (4.51)(1)
m°(4s + 137+ 1) > sm®(4s + 1;7) + sm®(ds + 1 7). (4.51)(ii)
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Then there exist ¢ >  and ¢’ > 0 so that for allr > 0,

A" 2 fi(r) 2 fo(r), (4.34)
hi(r) 2 ha(r) > A", (4.35)

Proof: First, we take the (v, v2) linear combination of (4.32)(ii) and (iii),
which preserves the inequality. Since (v1,v3)7 is an eigenvector,

Ulfl (?‘ + 1) + vzfg(l" -+ 1)
< (v1811 + vaar2)fi(r) + (vi621 + vaazs) fa(r) (4.36)
= AMv1fi(r) + vafa(r))
Since fa(r) > 0, (4.36) iterated r times implies that
v fi(r) S v fi(r) + vofalr) < (w1 £1(0) + v2 fo(0))N. (4.37)

Thus, (4.34) holds with ¢ = f1(0) + v; vaf5(0) > 0. Similar reasoning
applied to (4.33) leads to

vlhl(r) + ﬂghg(f‘) Z (U]_hl(O) -+ ‘Ughz(O))z\r, (438)
and, since hy(r) > ha(r), (4.38) implies that
(v1 + v2)hi(r) 2 (v1 + v2)h2(0)A". (4.39)

By (4.33)(iii) and (4.39),

ha(r + 1) > a12h(r) + azzhap(r) 2 arahy(r) > araka(0)A7. {4.40)
Thus, (4.35) holds for ¢ = min{h3(0), 812h2(0)A1} > 0. §
Theorem 4.41, There exist p;(2k-+1) and a and § > 0 so that for n > no,

an#t(ZE+) > b9k 4 1;n) > gnra(2E+1), (4.42)

Moreover,
A2k +2) > p(2k+1) k> 1 (4.43)(i)
Ha(2k + 1) > M2k), &k > 2. (4.43)(ii)

Proof: We mimic the proof of Thm. 4.7. Let

Me(2k + 1;7) = max{b(2k + 1;n) : n € I, n even}, (4.44)(i)
M2k + 1;7) = max{b(2k + 1;n) : n € I, n odd}, (4.44)(i))
m®(2k + 1;7) = min{b(2k + 1;n) : n € I,, n even}, (4.44)(jii)
m®(2k 4 1;7) = min{b(2k + 1;n) : n € I,, n odd}. (4.44)(iv}
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By Thm. 2.12(iii) and (iv), b(2k + 1;2m) > b(2k + 1;2m £ 1), hence

M2k + 1;7) > M°(2k + 1;7), (4.45)(3)
m®(2k +1;7) > m°(2k + 1 7). (4.45)(ii)

As before, (4.42) follows if we can find ¢; > 0 and ¢, 7 so that for r 2> rq,

at” > M2+ 1;r), {4.46)(i)
m®(2k + 1;r) > czor. (4.48)(i)

We divide into two cases, depending on k& (mod 2).
First suppose & = 25, s > 1. Then, Thm. 2.4 (iv), (v) becomes

b(4s+ 1;2n) = 8(ds + L;n)+ - -+ b{ds 4+ 1;n — 25}, (4.47)(i)
bas +1;2n+ 1) = b(4s + ;) + -+ b{ds + Lin — (25 — 1)).
(1.47)(ii)

There are 25+ 1 (n — j)’s on the right hand side of (4.47)(i), either s +1 or
s of them are even, and the rest odd. Taking the most extreme cases, we
obtain the following estimates for 2n € Iryy:

b(4s+1;2n) < (s + )M (4s 4+ 1;7) + sM(4s + 1;7), (4.48)(i)
b(4s + 1;2n) > sm®(4s + 1;7) + (s + 1)m°(4s + L;r).  (4.48)(ii)

Similarly, there are 2s (n — j)’s on the right-hand side of (4.47)(ii), so s of
them are even and s are odd, and

b4s+ 1;2n +1) < sM°(4s+ 1;7) + sM°(4s + 1;7),  (4.49)(i)
b(4s +1;2n + 1) > sm®(4s + 1;r) + sm’(4s + L;7).  (4.49)(ii)

In (4.48) and (4.49), we take the maximum over 2n, 2n+1 € Ir41 in (i) and
the minimum in (i) and, in view of (4.45), obtain two systems like (4.32)
and (4.33), (with fi, fo = M, M° and by, h2 = me, m°):

Me(4s + L;r + 1) < (s + D)M°(4s + 1;7) + sM°(4s + 1;7), (4.50)(3)
Mods+1;r+1) € sMe(4s + L;r) + sM°(4s + L;7);  (4.50)(ii)

me(4s + Lr +1) 2 sm(ds+ L;r) + (s 4+ Im°(4s + 15 r),(4.51)(1)
m®(4s + 1;r+ 1) > sm®(4s + L;7) + sm®(4s + 1;7).  (4.51)(i)

e
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Observe that the matrices

_|s+1 s | s s
Ml"[ 8 8]’ Mz"[s+1 s]’ (4'52)

have characteristic equations
p1(2) = 2% — (25 + L)z + 3, pa(z) = 2% — 25z — 5, (4.53)

respectively. We choose their larger eigenvalues:

A= Ai(s) = %((23 + 1)+ (452 + 1YV/2), (4.54)(3)
Az =da(s) = s+ (5% + 5)1/2, (4.54)(i)

For s > 1, each row of each M; — X\;I has one positive and one negative
entry, so the associated eigenvector has positive components. Thus the

hypotheses of Lemma 4.31 are satisfied, upon identifying (4.50) and (4.51)
with (4.32) and (4.33). We conclude from (4.34) and (4.35) that:

M(4s+ 1L;r) < M(4s + 1;7) < ], (4.55)(1)
m*(ds+ 1;0) 2 m°(4s + 1;r) > AL (4.55)(ii)

By the previous argument, it follows that (4.42) holds with
#1(4s + 1) = logy A1 (s), pa(ds + 1) = log, Az(s). (4.56)
We wish to establish (4.43) in this case. Considering (4.8), (4.54) and
(4.56), we exponentiate both sides of (4.43) to base 2, obtaining
2 +1> 2((2 +1) + (403 + 1)/, 5 > 1, (457)0)
s+ (2 +5)Y? > 25> 1. (4.57)(i1)

These inequalities may be routinely verified, completing the proof.
The identical reasoning holds when k = 25+ 1,5 > 0, with slight numer-
ical changes. We have

b(4s +3;2n) = b(ds + 1;n) + - + b(4s + L;n — 25 — 1), (4.58)(i)

b(4s+3;2n 4+ 1) = b(4s + 1;n) + - - + b(4s + ;1 — 2s). (4.58)(ii)
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Arguing as before, but without the details, we find that
Me(4s+3;r+ 1)< (54 DM (ds 4+ 3;7) + (s + DM (45 + 3; r),

(4.59)(i)

o sr+1) < (s + DM (ds +3;7) + sM°(4s + 3;7);
M°(4s +3;r +1) < (s + 1)M?( ) (4.59)(ii)

m*(4s + 37+ 1) > (s + )m*(4s + 3;7) + (s + m° (48 + 3;7),

(4.60)(1)
m®(4s + 3;r+ 1) > sm*(4s + 3;7) + (s + D)m (4s + 3; ﬂ@_ﬁg)(ﬁ)
The matrices
w=[1t ) = ] e
again satisfy the hypotheses of Lemma 4.31 with eigenvalues
da = dofs) = 3((2s + 1) + (452 +8s + 57, (462)()
As = () = 5 + 1+ (82 + 8)/3, (4.62)(ii)
and we conclude that (4.42) holds, where
pa(4s + 3) = log, Aa(s), pa(4s + 3) = log, Aa(s). (4.63)

Again, verification of (4.43) reduces to two more easy inequalities:

242> 2(2s 4 1)+ (162 +8s £ 5,520, (1600
s+1+(sP+8)/2 > 25+ 1,521 1 (4.64)(ii)

No claim is made that p1(2k 4 1) and p3(2k + 1) are best possible for all
k, although we show that this is true for & =1 (see Thm. 5.13.)
Corollary 4.85. If d > 3, then

bd + 1;n)
oMt Lin) o
nlingo b(d; n)

The omission of d = 2 is intentional. It is easy to check that 5(3;2"—1) =
1 for all r, hence 5(3;n)/b(2; n) = 1 infinitely often.
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5. Two Special Cases

In this section we discuss in greater detail the growth of b(3;n) and
b(6;n). We have seen that 3(2r;n) is very well-behaved. On the other
hand, b(3; n) is quite irregular, and its growth is described most easily in
terms of a closely related sequence,

The Stern sequence was first studied [S3] in the 1850s by M. Stern, a
student of Eisenstein, and has reappeared sporadically in the literature,
(See [R2] for a more extensive bibliography.) It is defined recursively:

8(0) = 0,5(1) = 1,5(2n) = s(n),s(2n+ 1) = s(n) + s(n+ 1),n > 1. (5.1)

The Stern sequence, per se. was apparently first defined in de Rham [Rd].
The block of terms {s(27),s(2" + 1),...,s(2"+1}} formed the r-th row in
the Stern-Broctot array, which was studied by Stern, Lucas [L3], Lehmer
[L1], et al. We construe results about these terms as results about the
Stern sequence.

Theorem 5.2.
b3hn)=s(n+1) for n>0. (5.3)

Proof: By Thm. 2.4(iv), (v), we have the recurrences:
b(3;2n) = B(3;n) + 8(3;n = 1) B(3;2n + 1) = 8(3;m) for n>1. (5.4)

Together with the initial condition (3;0) = 1, (5.4) determines 5(3;n) for
all n. A comparison with (5.1} shows that (5.3) holds for n < 1. An easy
induction now shows that it holds for all n:

B(3;2n) = b3 n) +b(3:n~1) = s(n+ 1} + s(n) = s(2n + 1),
(5.5)(3)
b(3;2n+ 1) =b(3n)=s{n+ 1) =s(2n+2). § {5.5){ii)

An incorrect version of Thm. 5.2 appeared in [C1,C2,C3,L2]. Carlitz
defined p(n) to be the number of odd Stirling numbers S(n,2r) of the
second kind, and proved it was also the number of odd binomial coefficients
({) so that ¢ + u = n. He showed that fy(n) satisfied the same recurrences
as 6(3;n) and gave its generating function:

G(z) = Zﬂg(n)z”‘ = ﬁ(l + ¥ 4 WY, (5.6)

Thus, G(z) = Fa(z) and fy(n) = b(3;n). From this, “it is clear that fo(n)
is the number of partitions

n=ng+n-24n-2%4... (6<n; <2) (5.7)
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subject to the following conditions: if np = 1, then ny < 1, if ny = 2, then
ng < 1, if ny = 2, then n3 < 1, and 80 on.” [C1, p.62]. Since fo(n) 1s, in
fact, the number of such partitions without the given conditions, there is
an error. Apparently, (5.6) was viewed as counting partitions of n in which
the j-th part was chosen from {0,2/,2/+}. If ng = 1, then 2% was chosen in
the 0-th part, and there is only one part left in which to select 21 etc. The
error first presents itself at n = 5, where (ng, n1,n2) = (1,2,0) or (1,0,1).
Note that the first violates the “conditions”, but the second occurs twice in
this alternate interpretation: 5 = 2% + 22 and 2° is taken in the O-th part,
hut 22 may be taken either in the first or second part.
We need the following classical facts about the Stern sequence.

Proposition 5.8. (Lucas, Lehmer) For r > 0, let I, = [27,2"*!], and
define M, = max{s(n):n € .} and m, = min{s(n):n € I} Then

Mf = Ff+2, My = 1, (5-9)
where F, is the n-th Fibonacci nuniber (Fo =0, Fy =1, Fpp1 = FotFra.)

Proof: Since 8{27) = 1 for all r and s(n) = #(3;n~ 1} > 1, m, = 1. By
{5.1), 8(2n £ 1) — 5(2n) = s(n + 1), so M, = s(m), where m is odd. As
s(4n+ 1) = s(2n + 1) + s(n) and s(4n + 3) = s(2n + 1) + s(n + 1),

My < Myoq + My_s. , (5.10)

We see from Table 7.1 that My = 1, M) = 2, Mz = 3, and Ma = 5. Define
the sequence @" by az, = (22+2 — 1}/3 and age41 = (2*7t3 +1)/3. (That
is, a; is the integer closest to $2'.) Then ap =1, 81 = 3, az = 5, ag = 11,
etc., and a; € I;. We wish to show that My = s(a;) for all t. From their
definitions, ag, = 2ag,_1 ~ 1 and ag,41 = 242, + 1, hence

s(azr) = s(agr—1) + s{aze—1 ~ 1) = s(azr—1) + s(azr-2), (5.33)(3)
s{aarp1) = 8(a2,) + s(azr + 1) = s(age) + s(az,~1).  (5.11)(iH)

Since M, = s{a,) for r < 3, by (5.10) and (5.11),
Mr—], + Mr.—2 2 M’" Z 8(ﬂr) = 5(“1_1) + S(ft,-_g) = Mr-—l + M —~2. (5.12)

Since My = 1 = Fy and M; = 2 = Fj, it follows that M; = Fiyyo. B

It can be shown (see [R2]) that, for 0 <k < 27, s(27 + k) = s(2r+ — k).
Thus, M, = F,43 also equals a(b,), where b, is the integer closest to 2-2’.

-
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Theorem 5.13. Let ¢ = 1(1+ /5) and p = logy . Then forn > 1, ang

some ¢ > 0,
e 2 ¥(3m) 2 1, (5.14)

and p = py((3) is best possible.
Proof: The lower bound is clear since 5(3;2" — 1) = s(2") = 1. By Thm.
5.2 and Prop. 5.8, b(3; n) < Fr4y for n € 2" — 1. The Binet formula for the
Fibonacci numbers implies that 7,41 = (¢/v5)¢" + (1), hence

5(3; 2} < (/VB)e" + (1) < (2/VB)n¥ + o(1). (5.15)
On the other hand, in the notation of the last theorem,

b(3;ar ~ 1) = Frya = (9 /VB)p" + o(1). (5.16)

Since ap — 1 s %2", the constant p cannot be reduced. §

Theorem 5.17. Suppose u = 2t 1s even. Then for + > 0,

BB 2" — 1) = (b(6yu— 1)~ %6(3; e W+ W& u— 1), (518)

Proof: Let A, = b(6;u-2" — 1). Then by Thm. 2.4(ii), (iv) and (v),

u2"=1 £2T—-1
Acpr= 30 b33 = Y {b(3:2) + 5(3; 25 + 1)}
j=0 j=0
t3T =1
= 3 {b(8;5)+ b(3; 5 — 1)+ 5(3; 1)} = 34, — b(3;¢ - 2" - 1),
f=0

_ (5.19)
Since §(3;1-2" ~ 1) = s(t - 27) = s(2t) = b(3; u — 1), (5.19) implies that

1
Argr ~ b0~ 1) = 8{4, ~ 2b(&u~ D}, (5.20)

from which (5.18) is immediate.

This theorem has interesting consequences for the behavior of

B(6; ) = 5(6; n)n~*(®) = b(8; n)n~ 1083, (5.21)
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Proposition 5.22 (Carlitz). nlim b(6; n) does not exist.
—+ 00

Proof: We apply Thm. 5.19 with v = 2 and u = 6, obtaining:

B(6;2-27 — 1) = %(3* +1), (5.23)(3)
b(6;6-2" - 1) =3+ 41, (5.23)(ii)

Thus,

B6,2-27 —- 1) = %(3" + 12+ ~ 1) 1o 1/6 2 1667
(5.24)(i)

5(5;5 Lo 1) - (3r+1 + 1)(3 e 2 . 1)—10&,3
— 31083 2 1753, § (5.24)(i1)

Carlitz writes in [C3,p.151]: “P. T. Bateman has suggested that it would
be of interest to examine the sum function

Sy = f:eu(k).” (5.25)
k=0

We have seen that S(n) = b(6;2n — 2). The computations (5.24) appear,
in effect, in [C3,p.152].

It can be shown that there exists a continuous function ¢ on [1,2] s0
that, if w = m/2¥ is a dyadic rational in [1,2], then b(6;u2") — ¥(u). A
proof of this result will appear elsewhere [R3].

6. Open Questions and Acknowledgements

We believe there is still much to learn about binary partition fanctions,
let alone their analogues for bases other than 2.

What other recurrences are satisfied by binary partition functions? How
can the various properties of b(co; n) be regarded as the limit of properties
of finite b(d; n)’s? For example, Knuth remarks that

b(o0; 4n)? ~ b{oo; dn — 2)b{00; 4n + 2) = b(oo; 2n)? (6.1}
is an immediate consequence of {2.9); similarly, by Thm. 2.4(vii},

b(4d; 4n)? — b(4d; 4n — 2)b(4d; 4n + 2) = b(2d; 2n)?. (6.2)
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There do not seem to be easy generalizations of Thm. 2.14 to moduli 7. Appendix
greater than 2; whenever the answer is known, the set Here is a table of b(d;n) for 2 < d < 9 and d and 0 < 1 < 32
ere of b(d;n) for 2 €< d < 9 and d = oo, <n <32
Ald;m,a)={n:b{din)=e (modm)} (6.3)
is‘ either finite or has a well-defined positive density. This is clear for m = 2. n\d 2 3 4 5 6 T8 9
Since f(r,t)(s) is an integer valued polynomial of degree r — 1, it is eag o011 1 1 1 1 1 1 1
to show tha.I.: f(r, t?(s) (mod m) is periodic for all s and m. It follows that 1 1 1 1 1 1 1 1 1 1
A(2";m,a)is a ﬁr.nte union of disjoint arithmetic progressions. In [R2] we 2 1 2 2 2 2 2 2 2 2
compute the density of A(3; m, a), which is determined by the primes which 311 2 2 2 2 2 9 9
dmdf: m and a. For example, if p is prime, A(3; p, 0) has density 1/(p+ 1) 4 1 3 3 4 4 4 4 4 4
and, if 1 < a < p—1, then A(3; p, ¢) has density p/(p? — 1). Churchhouse’s
results on b{co; n} (mod 4) also imply that A{co; 4, 0) has density 1/3 and 5 1.2 3 3 4 4 4 4 4
_ A(c0; 4, 2) has density 2/3. We risk a conjecture. 6 1 3 4 5 5 6 6 6 6
Conicct . 7 11 4 4 5 5 6 6 6
L_ ! om?;, ure 6.4. For all d, a and m, A(d;m,a) has well-defined density 8 1 4 5 8 8 9 ] 10 10
: a = efd, m,a).
;) ™) | 9 1 3 5 6 8 8 9 9 10
F’} . The asymptotic analysis of b(d; n) in section four begs a number of ques- 0 1 5 6 9 10 12 12 13 14
i tions. What are the values of (or estimates for) 11 1 2 6 7 10 1 12 12 14
23 ‘ 12 1 5 7 12 13 16 16 18 20
& o(2k) = lim b(k;n)n='o8a¥, (6.5)(i) 13 1 3 7 8 13 14 16 16 20
. n—oc
— _ 4 1 4 8 12 14 19 20 22 26
B(2k) = Jim bik;nyn” oeat; (6.5) ) 5 1 1 & 9 14 15 20 20 26
are these ever equal, except when & = 2"? What are the actual values of ig i 3 g g ig Zg gg gg ig
M(2k+1) = Tim log(8(2k + 1;n))/(logn}, (6.6)(3) 18 1 7 10 18 21 28 30 35 46
. . 19 1 3% 10 14 21 22 30 31 46
A2(2k4+1) = ﬂl_n"_rol_o log(b(2k + 1;n)/(logn)? (6.8)(ii) 20 1 8 11 23 2 34 36 44 60
A ” » S 21 1 5 11 15 26 29 36 38 60
Is ¢ - n* the "correct” bound; that is, is it true that, for all £ > 1, 29 1 7 12 22 28 39 42 50 74
0o > Tim b(2k + 1;n)n=Ha(2E+1) (6.7)(1) 23 1 2 12 16 28 30 42 44 74
e 24 1 7 13 28 33 46 49 62 94
lim (2% + 1; n)n~2:(2k+1) 5 2 (6.7)(i) 25 1 5 13 19 33 38 49 52 WM
! By 26 1 8 14 27 36 52 56 68 114
- Are there any Churchhouse-like formulas (viz. (1.3)) for b(d; n)’s, d < co? 27 1 3 14 20 36 40 56 59 114
- How does b(d; n)/b(co; ) behave; for which dy, is b(dn; n) ~ b(oo; n)/27 Are 28 1 7 15 32 40 59 64 81 140
there more combinatorial interpretations for the recurrences? 29 1 4 15 20 40 49 64 68 140
We t}}ank Pa.l.ll ].?:a.teman for providing a supportive atmosphere at the 30 1 5 16 29 41 64 72 88 166
University of Illinois for number theory, without which this paper would 31 1 1 16 21 41 48 72 76 166
never h.ave been attempted. We also thank the organizers of the conference 32 1 6 17 38 46 72 81 106 202
for their efforts and the editors of this collection, for their generosity in
considering this manuscript. Table 7.1
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