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1. Introduction and vague overview

1.1. Organization. These notes are about the Stern sequence, defined by

(1.1) s(0) = 0, s(1) = 1; s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1) for n ≥ 1.

This first chapter will introduce the subject of the Stern sequence and related mathe-
matical objects, and give some theorems about them which can be proved directly and
quickly. Each subsequent chapter will present a useful mathematical perspective, and
then apply it to the topics of the previous chapters. Chapter two is about generating
functions and formal power series. Chapter three covers constant-coefficient recur-
rences and their implications. Chapter four presents some of the classical facts about
finite simple continued fractions. Chapter five is devoted to Minkowski’s ?-function
and related questions in real analysis. Chapters six is about digital representation
questions. Chapter seven is about the behavior of s(n) (mod d). Chapters eight
(and possibly nine) will be about applications and special questions, and I’m not
completely sure yet what is likely to show up. I’m taking suggestions.

1.2. The array and the sequence. Let’s start at the beginning. Stern considered
the diatomic array, which resembles a Pascal’s triangle with memory:

(1.2)

a b

a a+ b b

a 2a+ b a+ b a+ 2b b

a 3a+ b 2a+ b 3a+ 2b a+ b 2a+ 3b a+ 2b a+ 3b b

· · ·

Z(a, b)

In words, we start with “a, b”, and repeat each row in the following row, with the
sums of consecutive terms inserted between them. The number of terms in the rows
is 2, 3, 5, 9, etc. and is evidently one more than a power of two. So the rows in (1.2)
are indexed by r, starting with r = 0 and having entries indexed from 0 to 2r.

1
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The formal definition of Z(r, k; a, b) for r ≥ 0 and 0 ≤ k ≤ 2r is given by:

(1.3)

Z(0, 0; a, b) = a,

Z(0, 1; a, b) = b;

Z(r, 2k; a, b) = Z(r − 1, k; a, b), for r ≥ 1;

Z(r, 2k + 1; a, b) = Z(r − 1, k; a, b) + Z(r − 1, k + 1; a, b), for r ≥ 1.

A few things are evident, and easily proved, from looking at (1.2) and (1.3). First,
each entry Z(r, k; a, b) is linear in (a, b) and second, the table has a left-right symmetry
if a and b are swapped:

(1.4) Z(r, 2r − k; a, b) = Z(r, k; b, a).

Application of these two observations allows us to reduce the study of (1.2) to that
of a single diatomic array, Z(r, k; 0, 1):

(1.5) Z(r, k; a, b) = Z(r, k; 1, 0)a+ Z(r, k; 0, 1)b = Z(r, 2r − k; 0, 1)a+ Z(r, k; 0, 1)b.

(1.6)

0 1

0 1 1

0 1 1 2 1

0 1 1 2 1 3 2 3 1

0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1

· · ·

Z(0, 1)

Each row of Z(0, 1) appears to be repeated as the first half of the next row. This is
easily proved by induction and (1.3).

Theorem 1.1. If 0 ≤ k ≤ 2r, then Z(r + 1, k; 0, 1) = Z(r, k; 0, 1) = s(k).

Proof. Write Z(r, k; 0, 1) = Z(r, k) for short. By inspection, Z(1, k) = Z(0, k) for
k = 0, 1. Suppose Z(r0, k) = Z(r0 − 1, k) for 0 ≤ k ≤ 2r0−1. If k = 2s is even and
2s ≤ 2r0 , then s ≤ 2r0−1, and by the induction hypothesis and (1.3), Z(r0, 2s) =
Z(r0−1, s) = Z(r0, s) = Z(r0 + 1, 2s). A similar argument holds if k = 2s+ 1 is odd,
taking care to check that 2s+ 1 ≤ 2r0 implies that s+ 1 ≤ 2r0−1.

Finally, Z(r, k) = s(k) for small k by inspection, and by (1.1) and (1.3), the two
sequences have the same recurrence, so they are always equal. �

(As we shall see in these notes, one must be careful to treat the base cases carefully,
since the inductive step is consistent with Z(r+ 1, k; a, b) = Z(r, k; a, b) for all (a, b),
which isn’t true.)
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It follows from Theorem 1.1 and (1.5) that

(1.7) Z(r, k; a, b) = Z(r, 2r − k; 0, 1)a+ Z(r, k; 0, 1)b = s(2r − k)a+ s(k)b.

Another property of Z(a, b) is a kind of self-similarity: any two consecutive ele-
ments in a given row can be thought of as the initial conditions of another diatomic
array which is generated as a subset of the subsequent rows, contained between
the subsequent appearances of the original pair. More formally, if 0 ≤ r, t and
0 ≤ k ≤ 2r, 0 ≤ n ≤ 2t − 1, then

(1.8) Z(r, k;Z(t, n; a, b), Z(t, n+ 1; a, b)) = Z(r + t, 2rn+ k; a, b).

(Again, this can be proved by a simple and omitted induction.)
In particular, if (a, b) = (0, 1) and t = dlog2(n+ 1)e in (1.8), we find that

(1.9) Z(r, k; s(n), s(n+ 1)) = s(2rn+ k).

The r-th row below is simply s(2rn), s(2rn+ 1) · · · , s(2r(n+ 1)).

(1.10)

s(n) s(n+ 1)

s(n) s(n) + s(n+ 1) s(n+ 1)

s(n) 2s(n) + s(n+ 1) s(n) + s(n+ 1) s(n) + 2s(n+ 1) s(n+ 1)

· · ·

Z(s(n), s(n+ 1))

Take n = 1 in (1.10) and note that s(1) = s(2) = 1 so the r-th row consists of
the elements s(2r), s(2r + 1), . . . , s(2r+1). In this way, we can quickly write s(n) for
1 ≤ n ≤ 64:

(1.11)

1 1

1 2 1

1 3 2 3 1

1 4 3 5 2 5 3 4 1

1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10 7 11 4 9 5 6 1

· · ·

Z(1, 1)

Note for later reference that, even though s(2r) appears twice above, as the last
entry in the (r−1)-st row and the first entry in the r-th row, each pair of consecutive
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entries, (s(n), s(n + 1)), occurs exactly once for n ≥ 1: (1,1),(1,2),(2,1),(1,3),(3,2),
etc.

By linearity, (1.9) and (1.5) imply that

(1.12) s(2rn+ k) = s(2r − k)s(n) + s(k)s(n+ 1) for 0 ≤ k ≤ 2r.

This can also be proved directly by induction on r, by considering the parity of k
and iterating (1.3). By making the substitutions (n, k) 7→ (n − 1, 2r − k) in (1.12),
we obtain a convenient generalization.

(1.13) s(2rn± k) = s(2r − k)s(n) + s(k)s(n± 1) for 0 ≤ k ≤ 2r.

Easy inductions imply that

(1.14) s(2r) = 1, s(2r − 1) = r,

and so (1.13) implies that

(1.15) s(2rn± 1) = rs(n) + s(n± 1).

For example,

(1.16)

s(2012)

= s(1006)

= s(503)

= s(251) + s(252)

= s(125) + 2s(126)

= s(62) + 3s(63)

= 4s(31) + 3s(32)

= 4s(15) + 7s(16)

= 4s(7) + 11s(8)

= 4s(3) + 15s(4)

= 4s(1) + 19s(2)

= 23s(1)

= 23.

Notice that the first entry of the argument of s in the r-th row of (1.16) is b2012
2r
c,

and the pattern of whether this argument is even or odd reflects, in reverse order,
the binary digits of 2012. See Theorem 1.6 below. Of course, one may stop the
computation at any point where s(n) and s(n+1) are known, and use (1.13) to derive
these more quickly. For example, 2012 = 64∗ 31 + 28, so s(2012) = s(31)s(64− 28) +
s(32)s(28), and s(36) = 4, s(28) = 3, s(31) = 5, s(32) = 1 imply that s(2012) =
5 ∗ 4 + 1 ∗ 3 = 23.
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These recurrences also can be used more abstractly. The Stern sequence seems to
have many unexpectedly nice properties. For example,

(1.17)
s((2r − 1)2) = s(22r − 2r+1 + 1) = s(2r+1(2r−1 − 1) + 1) =

(r + 1)s(2r−1 − 1) + s(2r−1) = (r + 1)(r − 1) + 1 = r2 = (s(2r − 1))2.

(A check up to 220 shows that s(n2) = (s(n))2 otherwise for odd n only for n =
27, 267, 7807, with no particular pattern evident in the exceptions. This might also
be a good place to note that s(3n) = 2n for n = 1, 2, 3, 6, and for no other n ≤ 165,
at least.)

1.3. Some properties of the rows. We now turn to some of the properties of the
rows of (1.11). Let

(1.18) Ir = {2r, 2r + 1, . . . , 2r+1},

so the r-th row of Z(1, 1) consists of s(n) for n ∈ Ir. For n = 2r + k ∈ Ir, let
n∗ = 3 · 2r − n = 2r+1 − k denote the reflection of n in Ir. By (1.12),

(1.19) s(n) = s(n∗) = s(k) + s(2r − k), s(n∗ + 1) = s(n− 1).

It is clear that s(n) ∈ N and that for n ≥ 1, s(2n) < s(2n+ 1) > s(2n+ 2), so the
growth of s(n) will be irregular. Let

(1.20) Mr := max{s(n) : n ∈ Ir}.

An inspection of (1.11) shows that

(1.21)

M0 = s(1) = 1,

M1 = s(3) = 2,

M2 = s(5) = s(7) = 3,

M3 = s(11) = s(13) = 5,

M4 = s(21) = s(27) = 8,

M5 = s(43) = s(53) = 13.

Let (Fm) denote the usual Fibonacci sequence, defined by F0 = 0, F1 = 1 and Fm =
Fm−1 + Fm−2, for m ≥ 2 and let

(1.22) nr =
2r+2 − (−1)r

3
=

4

3
· 2r − (−1)r

3
; n∗r =

5

3
· 2r +

(−1)r

3
.

These are the integers closest to 4
3
· 2r and 5

3
· 2r, and effectively trisect Ir.

Theorem 1.2.

(1.23) Mr = s(nr) = s(n∗r) = Fr+2.
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Proof. The theorem is valid by inspection if r ≤ 5. Suppose n ∈ Ir. If n = 2k, then
k ∈ Ir−1, so s(n) ≤ Mr−1. If n is odd, then n = 4k ± 1, and 2k ± 1 ∈ Ir−1 and
k ∈ Ir−2. Thus, s(n) = s(2k) + s(2k± 1) = s(k) + s(2k± 1), so s(n) ≤Mr−2 +Mr−1.
These arguments imply that Mr ≤Mr−1+Mr−2, and, based on the initial conditions,
that Mr ≤ Fr+2 for all r.

On the other hand, nr = 2nr−1 − (−1)r and nr−1 − (−1)r = 2nr−2, hence

(1.24) s(nr) = s(nr−1) + s(nr−1 − (−1)r) = s(nr−1) + s(nr−2).

Since s(nr) = Fr+2 for 0 ≤ r ≤ 5, (1.23) follows by induction. As a final remark,
if n ∈ Ir and s(n) = Mr, then the argument of the first paragraph implies that
n = 4k ± 1, s(2k ± 1) = Mr−1 and s(k) = Mr−2, so these are the only values where
the maximum occurs in each row. �

The Binet formula for the Fibonacci numbers states that

(1.25) Fn =
1√
5

(
φn − φ̄n

)
, where φ =

1 +
√

5

2
, φ̄ =

1−
√

5

2
.

Say that f(n) = Θ(g(n)) if there are positive constants cj so that c1g(n) ≤ f(n) ≤
c2g(n). If n ∈ Ir, then log2 n− 1 ≤ r ≤ log2 n, so r = log2 n+O(1) and

(1.26) φr = er log φ = Θ(e
logn
log 2
·log φ),

so

(1.27) Mr =
φ2

√
5
· φr + o(1) = Θ(nα) = o(n), where α =

log φ

log 2
≈ .69424.

By contrast to the irregular growth of s(n), its summatory function is very well-
behaved. It is convenient to use a variant notation. For integers a ≤ b, let

(1.28)

b∑∗

n=a

f(n) =
b∑

n=a

f(n)− 1
2

(f(a) + f(b))

= 1
2
f(a) + f(a+ 1) + · · ·+ f(b− 1) + 1

2
f(b).

This is familiar as the trapezoidal estimate to the integral of f(x) from a to b, and
has some useful properties

(1.29)

b∑∗

n=a

f(n) +

c∑∗

n=b

f(n) =

c∑∗

n=a

f(n);

a∑∗

n=a

f(n) = 0.

It will be particularly useful to consider sequences such as

(Φ(F (x); r)) , where Φ(F (x); r) :=
∑∗

n∈Ir

F (s(n)),

because s(2r) = s(2r+1) and each s(2r) would otherwise be counted twice.
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Let

(1.30) S(N) :=
N∑
n=0

s(n); S∗(n) :=

N∑∗

n=0

s(n) = S(N)− 1
2
s(N).

The following lemma illustrates the utility of this notation.

Lemma 1.3.

(1.31) S∗(2n) = 3S∗(n).

Proof. We prove a more general result:

(1.32)

2b∑∗

n=2a

s(n) = 1
2
s(2a) +

b−1∑
k=a+1

s(2k) + 1
2
s(2b) +

b−1∑
k=a

s(2k + 1)

= 1
2
s(a) +

b−1∑
k=a+1

s(k) +
b−1∑
k=a

(s(k) + s(k + 1)) + 1
2
s(b)

= 1
2
s(a) +

b−1∑
k=a+1

s(k) + s(a) +
b−1∑

k=a+1

s(k) +
b−1∑

k=a+1

s(k) + s(b) + 1
2
s(b)

= 3

(
1
2
s(a) +

b−1∑
k=a+1

s(k) + 1
2
s(b)

)
= 3

b∑∗

n=a

s(n).

�

Since S∗(1) = 1
2
, it follows that S∗(2r) = 1

2
· 3r, S(2r) = 1

2
· (3r + 1) and the sum of

the r-th row of (1.11) is S(2r+1)− S(2r) + 1 = 3r + 1, and:

(1.33)
2r+1−1∑
n=2r

s(n) =
2r+1∑

n=2r+1

s(n) =

2r+1∑∗

n=2r

s(n) = 3r.

This means that the average value of s(n) for n ∈ Ir is roughly (3
2
)r = (2r)β, where

(1.34) β =
log 3

2

log 2
≈ .58496.

By comparing (1.34) and (1.27), we see that the ratio of the maximum of a row to
the average of a row is unbounded, although the ratio grows slowly. For example the
maximum value of s(n) for n ∈ I20 is M20 = F22 = 17711, while (3

2
)20 ≈ 3325.

We shall show later that there is a continuous, strictly increasing function f , map-
ping [0, 1] to itself, with the property that, if N = 2r(1 + t) ∈ Ir, 0 ≤ t ≤ 1, then

(1.35)
1

3r

N∑∗

n=2r

s(n) = f(t).
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That is, the distribution of the “mass” of s(n), n ∈ Ir, is very well-behaved. The
function f , which (of course) is differentiable a.e., has the property that f ′(w) = 0
for every dyadic fraction w = p

2q
, but is singular at w when w = p

3·2q is in lowest
terms. Note also that by the linearity of the diatomic array and (1.9),

(1.36)
2r∑
k=0

Z(r, k; a, b) =
3r + 1

2
(a+ b),

2r∑
k=0

s(2rn+ k) =
3r + 1

2
· (s(n) + s(n+ 1)).

As another example of odd behavior of s(n), it is easy to check that s(Fr) is a
Fibonacci number for 1 ≤ r ≤ 9, but not for 10 ≤ r ≤ 200 (at least). Even if we
allow Lucas numbers (Lm = φm + φ̄m = Fm−1 +Fm+1), the only “interesting” hits in
this range are s(L15) = F10 = 55 and s(F27) = L11 = 199.

1.4. The consecutive pairs (s(n), s(n + 1)). It is fair to say that some of the
most important properties of the Stern sequence are in fact properties of the pairs
(s(n), s(n+ 1)). The first one goes back to Stern himself.

Theorem 1.4. For n ≥ 0, gcd(s(n), s(n + 1)) = 1. If a, b ≥ 1 and gcd(a, b) = 1,
then there is exactly one n so that s(n) = a and s(n+ 1) = b.

Proof. Inspection of Z(1, 1) shows that gcd(s(n), s(n + 1)) = 1 for small n. Since
gcd(a, a+ b) = gcd(a+ b, b) = gcd(a, b), it follows that s(n) and s(n+ 1) are always
relatively prime.

Now suppose gcd(a, b) = 1. We induct on max(a, b) = m. If m = 1, then the
equation s(n) = s(n + 1) = 1 clearly holds only for n = 1. Assume now that m ≥ 2
and m = a > b. Then s(n) = a, s(n + 1) = b can only happen if n = 2n′ + 1 is odd,
and only if s(n′) = a− b and s(n′ + 1) = b. By the inductive hypothesis, this occurs
for exactly one n′. A similar proof can be made if a < b, or else we can argue by
reflection using (1.19). �

We will soon give an alternative proof which constructs n based on the continued
fraction expansion of a

b
.

Corollary 1.5. Suppose m ≥ 1. There are exactly φ(m) odd integers n with the
property that s(n) = m.

Proof. If n is odd and s(n) = m and s(n + 1) = k, then k < m and gcd(m, k) = 1.
There are exactly φ(m) such integers k, and by Theorem 1.4, each k corresponds to
exactly one n so that s(n) = m and s(n+ 1) = k. �

The series
∑

n s(n)−p is never convergent, because s(2r) = 1 for all r. However,
Corollary 1.5 and standard results imply that

(1.37)
∞∑
n=0

1

(s(2n+ 1))p
=

∞∑
m=1

φ(m)

mp
=
ζ(p− 1)

ζ(p)
,

provided Re(p) > 2.



STERN NOTES, MATH 595, SPRING 2012 9

Let

(1.38) t(n) =
s(n)

s(n+ 1)
.

It follows from Theorem 1.4 that the sequence (t(n)) provides an enumeration of the
non-negative rationals, and that one can recover s(n) and s(n + 1) unambiguously
from t(n). (Cantor was a teenager in 1858, so it’s understandable that Stern did not
explicitly mention that Q is countable.) Further, for n ∈ Ir, the mirror symmetry
implies that

(1.39) t(n∗ − 1) =
s(n∗ − 1)

s(n∗)
=
s(n+ 1)

s(n)
=

1

t(n)
.

so reciprocals appear in the same row. We shall see later that

(1.40)
N∑
n=0

t(n) =
3N

2
+O((logN)2).

One can then argue that the “average” positive rational number is 3
2
.

There are several natural ways to express the sequence (t(n)). Historically, the first
was found by a French watchmaker named Achille Brocot, independently of Stern’s
work, who was interested in making a practical table of “gear ratios”. His table was
computed by starting with the fractions 0

1
, 1
0
, and then, if a

b
, c
d

are consecutive in the
r-th row, they are repeated in the r + 1-st row, with a+c

b+d
inserted between them:

(1.41)

0

1

1

0
0

1

1

1

1

0
0

1

1

2

1

1

2

1

1

0
0

1

1

3

1

2

2

3

1

1

3

2

2

1

3

1

1

0
· · ·

Brocot array

In Stern terminology, the r-th row of the Borcot array consists of s(k)
s(2r−k) ; the numer-

ators are the r-th row of Z(0, 1), the denominators are its reversal, or the r-th row
of Z(1, 0). Each row is increasing from left-to-right. It is not immediately clear how
to decode t(n) from this array.

More directly, write the elements of t(n) which appear in each row.



10 BRUCE REZNICK, UIUC

(1.42)

1

1
1

2

2

1
1

3

3

2

2

3

3

1
1

4

4

3

3

5

5

2

2

5

5

3

3

4

4

1
· · ·

t(n)

There is a subtle and confusing correspondence between these two arrays. The odd

elements in the r-th row of the Brocot array, s(2k+1)
s(2r−(2k+1))

, appear in the (r−1)-st row of

the t(n) array, in a different order. This depends on reversing binary representations
in a way that will be described later. Note that the rows of the t(n) array are not
constructed as simply as Farey sequences: 2

5
and 3

5
appear in the last row, but 1

5
and

4
5

do not.
Interestingly, the Stern sequence provides a second enumeration of the rationals.

If gcd(a, b) = 1, not only is there a unique n so that a
b

= t(n), but there is also a

unique odd k and r so that a
b

= s(k)
s(2r+k)

. The array whose r-th row is s(k)
s(2r+k)

has

monotone rows, and is essential to Minkow- ski’s bizarrely-named ?-function. You
may recognize it as a Brocot array starting with 0

1
, 1
1

instead of 0
1
, 1
0
; the k-th element

in the r-th row is s(k)
s(2r+k)

:

(1.43)

0

1

1

1
0

1

1

2

1

1
0

1

1

3

1

2

2

3

1

1
0

1

1

4

1

3

2

5

1

2

3

5

2

3

3

4

1

1
· · ·

Minkowski ?- array

The Minkowski ?-function, which maps [0, 1] to itself, is defined recursively by taking
the initial conditions ?(0) = 0, ?(1) = 1, and recursively applying the rule:

(1.44) ?
(
a
b

)
= k

2r
, ?
(
c
d

)
= k+1

2r
=⇒ ?

(
a+c
b+d

)
= 2k+1

2r+1 .
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(We assume above that a
b
, c
d

are given in lowest terms.) This definition only gives

?(x) for rational x ∈ [0, 1]: ?( s(k)
s(2r+k)

) = k
2r

, for 0 ≤ k ≤ 2r, but we shall see that ?

extends uniquely to a continuous function.

1.5. Continued fractions make their presence known. There is a simple closed
form for t(n), which leads to simple formula for s(n). This formula is useful for many
symbolic purposes; however, for any specific numerical n, it is usually easier to use
(1.1) directly to compute n; c.f. (1.16).

Suppose n is a positive integer, so n ∈ Ir for some r, and let [n]2 denote the usual
binary representation of n, reading left-to-right, with no leading 0’s and first digit 1:

(1.45) n =
r∑
j=0

εj(n)2j, εj(n) ∈ {0, 1} =⇒ [n]2 = [εr(n), . . . , ε0(n)]2

It is useful to think of [n]2 in terms of the blocks of consecutive 0’s and 1’s, and it
is also useful to distinguish by the parity of n. If n is odd, then [n]2 consists of an
odd number of alternating blocks of 1’s and 0’s, beginning and ending with 1’s. More
specifically, suppose [n]2 has a1 1’s, followed by a2 0’s, a3 1’s, etc, ending with a2v
0’s and a2v+1 1’s. (By convention, assume that aj ≥ 1.) We write n ∼ [a1, . . . , a2v+1]
and observe that

(1.46) n = 2a1+···+a2v+1 − 2a2+···+a2v+1 +− · · ·+ 2a2v+1 − 1.

If n is even, then [n]2 consists of an even number of alternating blocks, beginning
with 1’s and ending with 0’s. If [n]2 has a1 1’s, followed by a2 0’s, a3 1’s, etc, ending
with a2v−1 1’s and a2v 0’s, we write n ∼ [a1, . . . , a2v] and observe that

(1.47) n = 2a1+···+a2v − 2a2+···+a2v +− · · ·+ 2a2v−1+a2v − 2a2v .

Suppose n ∼ [a1, . . . , au] and n′ ∼ [a1, . . . , au−1]. If n is odd, then n′ is even, and
n = 2aun′ + 2au − 1; if n is even, then n′ is odd, and n = 2aun′. In either case,∑

j aj = r + 1. For example,

(1.48)
243 = 27 + 26 + 25 + 24 + 21 + 20 = [11110011]2 =⇒ 243 ∼ [4, 2, 2],

140 = 27 + 23 + 22 = [10001100]2 =⇒ 140 ∼ [1, 3, 2, 2]

Consider (1.42) as a binary tree, with the nodes labeled by the consecutive integers.

(1.49)

[1]2

↙ ↘
[10]2 [11]2

↙ ↘ ↙ ↘
[100]2 [101]2 [110]2 [111]2

· · ·
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Now write the binary tree with t(n) at the node labeled by [n]2.

(1.50)

1
1

↙ ↘
1
2

2
1

↙ ↘ ↙ ↘
1
3

3
2

2
3

3
1

· · ·
From the definition,

(1.51)

t(2n) =
s(2n)

s(2n+ 1)
=

s(n)

s(n) + s(n+ 1)
=

1

1 + 1
t(n)

=
t(n)

t(n) + 1

t(2n+ 1) =
s(2n+ 1)

s(2n+ 2)
=
s(n) + s(n+ 1)

s(n+ 1)
= t(n) + 1.

Let

(1.52) f0(x) =
x

x+ 1
, f1(x) = x+ 1.

Then we see that, using the terminology of (1.45) and noting that εr(n) = 1 for all n
and t(0) = 0, we have

(1.53) t(n) = fε0(n)(fε1(n)(· · · (fεr−1(n)(fεr(n)(0))) · · · )).

If we let g(k) denote the k-th iterate of a function g, it is routine to check that

(1.54) f
(k)
0 (x) =

x

kx+ 1
=

1

k + 1
x

, fk1 (x) = x+ k.

The effect of appending k 0’s or k 1’s to [n]2 implies that

(1.55) t(2kn) =
1

k + 1
t(n)

, t(2kn+ 2k − 1) = k + t(n).

Also note that similar expressions exist if one chooses to view the consecutive pair
of Stern-values as a column matrix rather than as a fraction. Let

(1.56) M0 =

[
1 0
1 1

]
, M1 =

[
1 1
0 1

]
.

Then

(1.57)

[
s(2n)

s(2n+ 1)

]
= M0

[
s(n)

s(n+ 1)

]
,

[
s(2n+ 1)
s(2n+ 2)

]
= M1

[
s(n)

s(n+ 1)

]
.

It follows that

(1.58)

[
s(n)

s(n+ 1)

]
= Mε0(n)Mε1(n) · · ·Mεr−1(n)Mεr(n)

[
0
1

]
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The powers of these matrices are familiar from the study of continued fractions.

(1.59) Mk
0 =

[
1 0
k 1

]
, Mk

1 =

[
1 k
0 1

]
.

Theorem 1.6.
(i) If n is odd and n ∼ [a1, . . . , a2v+1], then

(1.60) t(n) =
s(n)

s(n+ 1)
= a2v+1 +

1

a2v + 1
···+ 1

a1

.

(ii) If n is even and n ∼ [a1, . . . , a2v], then

(1.61) t(n) =
s(n)

s(n+ 1)
=

1

a2v + 1
···+ 1

a1

.

Proof. Let n ∼ [a1, . . . , ak]. We argue by induction on k. If k = 1, then n ∼ [a1], so
n = 2a1 − 1 and (1.14) shows that

(1.62) t(2r − 1) =
s(2r − 1)

s(2r)
=
r

1
= r.

If n > 1 is odd, then k is odd, n = 2a2v+1n′+2a2v+1−1, where n′ is even, and (1.61)
applies to n′ by the inductive hypothesis. By (1.55), (1.60) holds for n. Similarly, if
n > 0 is even, then k is even, n = 2a2v+1n′ where n′ is odd, and (1.60) applies to n′

by the inductive hypothesis. By (1.55), (1.61) holds for n. �

Suppose a rational number a
b
> 1 is given. One may write it as a simple continued

fraction (i.e., as in (1.60)) in two ways, because the final denominator may either be
chosen as m (for m ≥ 2) or (m − 1) + 1

1
. Exactly one of these representations will

have an odd number of denominators, to which Theorem 1.6 will apply, stating that
s(n) = a, s(n+ 1) = b. If a

b
< 1, either apply Theorem 1.6 to b

a
and apply (1.39), or

use the representation of b
a

with an even number of denominators and apply Theorem
1.6 directly.

Later on, we’ll see that Theorem 1.6 implies that the ?-function gives a strictly
increasing bijection of the rationals in [0, 1] onto the dyadic rationals in [0, 1]. The
properties of periodic infinite continued fractions imply that that the ?-function gives
a strictly increasing bijection of the algebraic numbers of degree ≤ 2 in [0, 1] onto the
rationals.

Further, h(a, b), the sum of the denominators in the continued fraction representa-
tion of a

b
does not depend on which choice of representation is used, and equals the

number of binary digits in n, so n ∈ Ih(a,b)−1 and a
b

will appear in row h(a, b)−1. For
example, 4 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 are the ordered partitions of 4 as an
odd number of summands and

(1.63) 4 =
4

1
, 2 +

1

1 + 1
1

=
5

2
, 1 +

1

2 + 1
1

=
4

3
, 1 +

1

1 + 1
2

=
5

3
.
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These (together with their reciprocals) are the entries of the fourth row of (1.42).
One somewhat surprising consequence of the properties of simple continued frac-

tions is the following. For odd n, let ←−n denote the integer whose binary expression
is the reversal of n; more formally, if n ∼ [a1, . . . , a2v+1], then ←−n ∼ [a2v+1, . . . , a1]. It
turns out that s(←−n ) = s(n) and s(n+ 1)s(←−n + 1) ≡ 1 (mod s(n)). It also turns out

that [n∗]2 can be expressed in terms of [n]2 and that
←−−
(n∗) = (←−n )∗. Indeed, suppose

(1.45) holds. Then we first claim that

(1.64) n∗ = 1 +
r−1∑
j=1

(1− εj(n))2j + 2r,

because this is equivalent to the assertion that n+ n∗ = 2 +
∑r−1

j=1 2j + 2 · 2r = 3 · 2r.
Similarly, we obtain

(1.65) ←−n = 1 +
r−1∑
j=1

εr−j(n)2j + 2r,
←−−
(n∗) = (←−n )∗ = 1 +

r−1∑
j=1

(1− εr−j(n))2j + 2r.

Suppose n is odd and

(1.66) s(n− 1) = m− a, s(n) = m, s(n+ 1) = a.

Then we have

(1.67) s(n∗ − 1) = a, s(n∗) = m, s(n+ 1) = m− a,

and if b < m is such that ab ≡ 1 (mod m), then (after a later proof),

(1.68)
s(←−n − 1) = m− b, s(←−n ) = m, s(←−n + 1) = b

s(←−n ∗ − 1) = b, s(←−n ∗) = m, s(←−n ∗ + 1) = m− b.

Unless n = 3, it is always the case that n 6= n∗, although n = ←−n or n = ←−n ∗ occur
roughly 2r/2 times in the r-th row; these correspond to a2 ≡ ±1 (mod m), where
m = s(n). Thus one can usually expect s(n) = m to occur in groups of four odd n

in a row for a given m – for n, n∗,←−n ,←−n∗.
As a numerical example, using the computation 243 ∼ [4, 2, 2] from (1.48), we have

(1.69) t(243) =
s(243)

s(244)
= 2 +

1

2 + 1
4

= 2 +
4

9
=

22

9
,

so s(243) = 22 and s(244) = 9. As a double-check of reflection, 244∗ = 140, 243∗ =
141 and 140 ∼ [1, 3, 2, 2] so

(1.70) t(140) =
s(140)

s(141)
=

1

2 + 1
2+ 1

3+1
1

=
1

2 + 1
2+ 1

4

=
9

22
.
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Since [
←−
243]2 = 11001111,

←−
243 = 207, and

(1.71) t(207) =
s(207)

s(208)
= 4 +

1

2 + 1
2

= 4 +
2

5
=

22

5
.

Note that 9 · 5 = 22 · 2 + 1, that 243∗ = 3 · 128 − 243 = 141, [141]2 = 10001101,

[
←−
141]2 = 10110001, so

←−
141 = 177 = 207∗, and just to finish up,

(1.72) t(141) =
s(141)

s(142)
=

22

13
, t(177) =

s(177)

s(178)
=

22

17
.

We can use Theorem 1.6 to determine the solutions to the equation s(n) = m for
fixed m. For example, suppose n is odd and s(n) = 12. Since gcd(12, s(n + 1)) = 1
and s(n+ 1) < 12, we must have s(n+ 1) ∈ {1, 5, 7, 11}. Every positive rational has
a finite continued fraction: and, as

(1.73)
12

1
= 12,

12

5
= 2 +

1

2 + 1
2

,
12

7
= 1 +

1

1 + 1
2+ 1

2

,
12

11
= 1 +

1

11
.

Since the last two expressions have an even number of denominators, we tweak the
innermost denominator to give an odd length:

(1.74)
12

7
= 1 +

1

1 + 1
2+ 1

1+1
1

,
12

11
= 1 +

1

10 + 1
1

.

Thus, we see that s(n) = 12 when [n]2 ∼ [12], [2, 2, 2], [1, 1, 2, 1, 1] or [1, 10, 1], that
is, when [n]2 = [111111111111]2 = 212 − 1 = 4095, [n]2 = [110011]2 = 51, [n]2 =
[101101]2 = 45 or [n]2 = [100000000001]2 = 211 + 1 = 2049. Note that 45∗ = 51 and
2049∗ = 4093, and all four binary expressions are palindromes, since 12, 52, 72, 112 ≡ 1
(mod 24).

As a symbolic example, (2r − 1)2 = 22r − 2r+1 + 1 = 22r−1 + 22r−2 + · · ·+ 2r+1 + 1,
so (2r − 1)2 ∼ [r − 1, r, 1] and,

(1.75) t((2r − 1)2) =
s((2r − 1)2)

s((2r − 1)2 + 1)
= 1 +

1

r + 1
r−1

=
r2

r2 − r + 1
.

1.6. The Stern sequence mod d and some combinatorial interpretations.
For integers d ≥ 2 and 0 ≤ i ≤ d− 1, let

(1.76) A(d, i) = {n : s(n) ≡ i (mod d)},

and let

(1.77)
T (N ; d, i) = |{n ∈ A(d, i) : 0 ≤ n < N}|,
U(r; d, i) = T (2r+1; d, i)− T (2r; d, i).

Stern noted that s(n) (mod 2) is periodic with period 3; in this notation, A(2; 0) =
3N and T (N ; 2, 0) = bn+2

3
c, so U(r; 2, 0) = 1

3
(2r − (−1)r). We shall prove later that
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each U(r; d, i) satisfies a linear recurrence, and

(1.78) u(d; i) := lim
r→∞

U(r; d, i)

2r

exists as a computable arithmetic function of (d, i). A stronger statement is true:

(1.79) lim
N→∞

T (N ; d, i)

N
= u(d, i);

that is, the limit applies even through elements in the middle of the rows.
Define the arithmetic function I(m) by

(1.80)
I(m)

m
=
∏
p | m

p+ 1

p
.

Then u(d, 0) = 1
I(d)

. In some cases, when I(d1) = I(d2), an even stronger statement

can be made: I(4) = I(5) = 6 and U(r; 4; 0) = U(r; 5, 0). That is the number of
multiples of 4 and the number of multiples of 5 is the same for {s(n) : n ∈ Ir}.
Further, I(6) = I(8) = I(9) = I(11) = 12, and U(r; 6, 0) = U(r, 9, 0) = U(r; 11, 0),
but U(8; r, 0) is different. The function I has interesting iterative behavior: there exist
a(d), b(d) such that, for each integer d and sufficiently large N , I(N)(d) = 2N+a(d)3b(d).

These observations are a consequence of studying the behavior of Stern pairs mod-
ulo d. Note that if (s(n), s(n + 1)) ≡ (a, b) (mod d), then gcd(a, b, d) = 1. It turns
out that the residue classes are always uniformly distributed among these possible
pairs. The argument requires a Markov chain model.

In case d = 3, stronger information can be presented. Define the set S3 ⊂ N
recursively by:

(1.81) 0, 5, 7 ∈ S3, 0 < n ∈ S3 =⇒ 2n, 8n± 5, 8n± 7 ∈ S3.

(Thus, the smallest non-negative integers in S3 are: 0, 5, 7, 10, 14, 20, 28, 33, 35, 40,
45, 47, 49, 51, 56, 61, 63.) This is a member of an interesting family of recursively
defined sets, and associated directed graphs on Z.

Theorem 1.7. A(3, 0) = S3.

Proof. We first observe that by (1.13),

(1.82) s(2n) = s(n), s(8n±5) = 2s(n)+3s(n±1), s(8n±7) = s(n)+3s(n±1).

Thus, 3 divides s(n) if and only if 3 divides s(2n), s(8n± 5), s(8n± 7). Every n ∈ N
belongs to exactly one of the congruence classes 0 (mod 2), ±5 (mod 8), ±7 (mod 8),
and if n ≥ 2, then n = 2n′, 8n′ ± 5 or 8n′ ± 7 with n′ < n. Thus, the inductive
construction of S3 gives all n for which s(n) is a multiple of 3. �

We shall also show that T (N ; 3, 0) = 1
4
N + O(N1/2), with the error bound best

possible, and T (N ; 3, 1)− T (N ; 3, 2) ∈ {0, 1, 2, 3}.
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We turn to digital questions. Let A = {0 = a0 < a1 < · · · ar} denote a finite subset
of N containing 0, and let fA(m) denote the number of ways to write m in the form

(1.83) m =
∞∑
k=0

εk2
k, εk ∈ A.

For example, the binary representation of m implies that f{0,1}(m) = 1 for all m.

Theorem 1.8.

(1.84) s(n) = f{0,1,2}(n− 1).

Proof. Let f(m) = f{0,1,2}(m) for short. Observe that 0 = s(0) = f(−1) trivially and
1 = s(1) = f(0), since the only way to write 0 as (1.83) is to have εk ≡ 0 for all k.
We now show that

(1.85) f(2n− 1) = f(n− 1), f(2n) = f(n) + f(n− 1),

and this will establish the theorem by induction, by comparison with (1.1) and (1.84)
Notice that m ≡ ε0 (mod 2) in (1.83); moreover,

(1.86) m = ε0 + 2
∞∑
j=0

εj+12
j = ε0 + 2m′,

and the representation of m′ obeys (1.83) as well. It follows that in any representation
of 2n− 1 in (1.83), we must have ε0 = 1, with m′ = n− 1, and in any representation
of 2n in (1.83), we may have ε0 = 0 or 2, with m = n or n− 1 respectively. �

Theorem 1.8 will become more transparent when we discuss the generating function
for the Stern sequence:

∞∑
n=0

s(n)xn = x
∞∏
j=0

(1 + x2
j

+ x2
j+1

).

Another combinatorial interpretation is almost trivial. Let G be a directed graph
whose vertices are N and whose directed edges are precisely those of the the form
(2k, k), (2k + 1, k), (2k + 1, k + 1). Then s(n) is the number of paths from n to 1.
Somewhat surprisingly, G is planar: to draw it in this way, put the vertices from Ir,

n = 2r + k, at the points (log(n+ 1))e2πi
k
2r on a spiral in the plane.

1.7. Exercises. Do some of these. Extensions of Problem 10 will show up in subse-
quent exercise sets, so it’s a good one to do. Let’s say a deadline of Fri. Feb. 3, at
the beginning of class, at which point I’ll pass out solutions.

1. Write today’s date as MMDDYYYY ∈ [107, 109) and compute s(n). For example,
the first day of class was Jan. 18, 2012, and s(01182012) = 1244. (Europeans should
use DDMMYYYY; s(18012012) = 15394.) This problem can be done on several days
in a row, especially using a program.
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2. Determine n so that s(n) = 2012 and s(n + 1) = 595. Note that 2012 = 22 · 503
and 595 = 5 · 7 · 17 are relatively prime.

3. Prove that
N∑∗

n=0

n =
N2

2
,

N∑∗

n=0

n2 =
N3

3
+
N

6
,

and compute
N∑∗

n=0

n3.

4. Let νp(n) denote the exponent of p in the prime factorization of n. Show that

s(n− 1) + s(n+ 1)

s(n)
= 1 + 2ν2(n).

5. Determine, by any correct method, all odd integers n so that s(n) ∈ {10, 11}.

6. Using (1.22), compute [nr]2; there are two slightly different answers, depending on
the parity of r.

7. Find and prove a formula relating

T (n) :=

bn/3c∑
k=0

s(n− 3k)

and S(n).

8. For r ≥ 1 and t ≥ 0, compute s((2r + 1)2) and s((2r − 1)(2r+t − 1)).

9. Sometimes the Stern sequence fakes you out. Suppose

cr =

(∑∗

n∈Ir

1

)(∑∗

n∈Ir

s(n)2

)
−

(∑
n∈Ir

s(n)

)2

.

We know that cr ≥ 0 by the Cauchy-Schwarz Inequatilty. Show that c1 = 1, c2 = 11
and c3 = 111. Compute the disheartening value of c4.

10. (The first in a series.) Show that for k ∈ N, there exist functions A(k), B(k) so
that for r > log2 k,

s(2r − k) = A(k)r +B(k).

The most instructive way to do this problem is to see what happens for small values
of k first. The recursion is helpful, the continued fraction, less so.
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2. Generating functions

2.1. Definitions. One of the ways number theorists and combinatorists study a
numerical sequence a = (a0, a1, . . . ) is to associate it with a generating function

(2.1) fa := f =
∞∑
n=0

anX
n.

We use the capital letter to emphasize that X is more a place-holder than a vari-
able. We do not care about the convergence in making this definition. (If the series
does have a positive radius of convergence, then it is also desirable to treat it as an
analytic function, and write f(z).) Technically speaking, a generating function is a
formal power series. The next few pages contain some of the necessary theoretical
background for formal power series. Three excellent books which cover this topic and
much, much more are: Concrete Mathematics by Graham, Knuth and Patashnik, the
two volumes of Enumerative Combinatorics by Stanley, and Generatingfunctionology
by Wilf, which is also available on-line.

We assume R is an integral domain, a commutative ring with identity 1R and no
zero divisors. The examples here will usually be C,Z,Z/pZ for prime p. Let R[[X]]
denote the ring of formal power series in R.

The operations in R[[X]] are the familiar natural ones; we act as if the elements
are ordinary convergent power series, so

(2.2)

f =
∞∑
n=0

anX
n, g =

∞∑
n=0

bnX
n =⇒ f + g =

∞∑
n=0

(an + bn)Xn,

fg =
∞∑
n=0

cnX
n, where cn =

n∑
k=0

akbn−k,

r ∈ R =⇒ rf =
∞∑
n=0

ranX
n.

It is routine, and not very interesting, to prove that R[[X]] is also an integral domain,
with identity element 1R[[X]] := 1 +

∑∞
n=1 0 · Xn, and we’ll skip this, although the

following result is useful.
1
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Theorem 2.1. If f =
∑∞

n=0 anX
n ∈ R[[X]] and a0 is invertible in R, then f is

invertible in R[[X]].

Sketch of proof. Taking f, g as above, we see that fg = 1R[[X]] if and only if this
infinite system of equations is valid:

a0b0 = 1, a0b1 + a1b0 = 0, a0b2 + a1b1 + a2b0 = 0, . . .

If we define b0 = a−10 , b1 = −a−10 (a1b0), b2 = −a−10 (a1b1 + a2b0), etc, it’s easy to see
that the bn’s can be defined recursively. �

If f is invertible and fg = h, we write g = f−1h and g = h/f interchangeably.
One application is that if f ∈ C[[X]] with integer coefficients, so f ∈ Z[[X]] as well,
and a0 = 1, then f−1 ∈ Z[[X]].

An appeal of generating functions is that natural operations on the sequence are
often easily expressed in the generating function. For example,

(2.3)

Xk ·
∞∑
n=0

anX
n =

∞∑
n=k

an−kX
n,

∞∑
n=0

Xn ·
∞∑
n=0

anX
n =

∞∑
n=0

(
n∑
k=0

ak

)
Xn,

∞∑
n=0

X tn ·
∞∑
n=0

anX
n =

∞∑
n=0

bn/tc∑
k=0

an−kt

Xn,

(1−X) ·
∞∑
n=0

anX
n = a0 +

∞∑
n=1

(an − an−1)Xn.

The last equation above generalizes in an interesting way:

(2.4)

(1− λ1X − · · · − λdXd) ·
∞∑
n=0

anX
n =

d−1∑
k=0

(ak − λ1ak−1 − · · · − λka0)Xk +
∞∑
n=d

(an − λ1an−1 − · · · − λdan−d)Xn.

Since C[[X]] is a vector space over C, suppose λ := (λ1, . . . , λd) ∈ Cd is fixed and let

(2.5)

Aλ =

{
f =

∞∑
n=0

anX
n ∈ C[[X]] : an = λ1an−1 + · · ·+ λdan−d, n ≥ d.

}

=

{
f : (1− λ1X − · · ·λdXd)f =

d−1∑
k=0

bkX
k

}
.

That is, Aλ is the set of generating functions of sequences satisfying a given linear
recurrence. Then (2.5) implies that Aλ is a d-dimensional subspace of C[[X]].
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The order of a non-zero element f ∈ R[[X]], ord(f), is the smallest index n for
which an 6= 0; in this case, we say that f has leading term anX

n, with leading
coefficient an. It is customary to say that ord(0R[[X]]) =∞; don’t tell the undergrads!

Put another way, ord(f) ≥ n if and only if f = Xng for some g ∈ R[[X]]; if f
also defines an analytic function, then ord(f) is the order of z = 0 as a zero of f . If
f happens to be a polynomial (formally, if an = 0 for n > d), the order of f is the
smallest degree of a non-zero monomial in f , not the largest.

More generally, ord(fg) = ord(f) + ord(g), (so ord(fk) = k ∗ ord(f)); however,
addition is trickier. If ord(f) 6= ord(g), then ord(f + g) = min(ord(f), ord(g));
if ord(f) = ord(g) = m, say, then ord(f + g) ≥ m, with inequality occurring if
the leading terms of f and g cancel. Since ord(1R[[X]]) = 0, if f is invertible, then
ord(f) = ord(f−1) = 0. If f − f ′ and g − g′ both have order ≥ n, then so does
fg − f ′g′ (write f = f ′ + h and g = g′ + k and multiply out.)

We impose the following topology on R[[X]], based on the premise that we should
assume nothing about the topology of R. For each n ≥ 1, the open ball of radius 1

n
centered at f consists of f , together with the set of g so that ord(f − g) ≥ n. That
is, the elements of this open ball are those g with the property that the first n terms
of f and g agree. According to this topology, if fr ∈ R[[X]], then “fr → f” means
precisely that for every n ∈ N there exists Mn so that if r ≥ Mn and j ≤ n, then
the coefficients of xj are the same in fr and f ; that is, the coefficients stabilize. It is
routine to verify that if g ∈ R[[x]] and fr → f , then gfr → gf .

This is not the usual power series convergence. For example, every formal power
series converges! That is, it’s always true that

(2.6) lim
N→∞

N∑
n=0

anX
n =

∞∑
n=0

anX
n.

However, if R = C and f 6= 0, then (1 + 1
n
)f never converges to f . Also, if

fN =
∞∑
n=0

anX
nN ,

then fN → a0 as N →∞, (For analytic functions, fN(z) = f(zN), and if f is analytic
in a neighborhood of zero and |z| < 1, then it is true that limN f(zN) = a0.)

Here is a proof that the geometric series converges in R[[X]] to (1−X)−1 according
to this definition of convergence. (Since X is not assumed to take a value, there is
no “circle of convergence”.) Let

(2.7) f =
∞∑
n=0

Xn, fN =
N∑
n=0

Xn.

Then (1−X)fN = 1−XN+1, and since fN → f and (1−X)fn → 1R[[X]], it follows
that (1 − X)f = 1R[[X]]; that is, f = (1 − X)−1. It is routine to verify that if
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ord(h) ≥ 1, then

(2.8)
∞∑
n=0

hn = (1− h)−1.

More generally, if h ∈ R[[X]] and ord(h) ≥ 1, then functional composition can be
unambiguously defined:

(2.9) f =
∞∑
i=0

aiX
i =⇒ f ◦ h =

∞∑
i=0

aih
i

We violate our usual squeamishness about functional dependence when h = X t:

(2.10) f(X) =
∞∑
n=0

anX
n =⇒ f(X t) =

∞∑
n=0

anX
nt.

One more pathology. There is nothing wrong with talking about

f = 1−
∞∑
n=1

n!Xn ∈ C[[X]]

as a formal power series, and since its leading coefficient is 1, it is invertible. It would
follow then from (2.8) that

(2.11) f−1 = 1 +
∞∑
n=1

enX
n = 1 +

∞∑
k=1

(
∞∑
m=1

m!Xm

)k

.

For numerical X = z, the series for f only converges for X = 0. But each particular
en, n ≥ 1, can be calculated as a finite sum from (2.11):

en =
∑

j1+2j2+···+njn=n

(j1 + · · ·+ jn)!

j1! · · · jn!
1!j1 · · ·n!jn ,

where the block of terms satisfying the additional condition that
∑
j` = k come from

(
∑∞

m=1m!Xm)k. There are circumstances in which this sort of sum arises.

2.2. Infinite products. We are particularly interested in infinite products. Suppose
ord(gn)→∞ and define

(2.12)
∞∏
n=1

(1 + gn) := lim
N→∞

N∏
n=1

(1 + gn).

It is routine to verify that the coefficient of xj in the partial products stabilizes once
ord(gn) > j, and so the limit in (2.12) is always defined.

Again, this definition is somewhat different from the analytic case. For example,
as a formal power series

∞∏
n=1

(1 + nnXn)
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is a perfectly well-defined infinite product, even though, as a complex power series,
it would converge only for X = z = 0. On the other hand, Euler’s famous infinite
product, remade for formal power series:

sin(πX)

πX
=
∞∏
n=1

(
1− X2

n2

)
,

is not convergent as a formal power series under this definition, because the coefficient
of X2 on the right hand side never stabilizes.

The most vital infinite product in number theory is quite simple, either as a formal
power series or as a generating function.

(2.13)
∞∏
n=0

(1 +X2n) = (1−X)−1.

The proof of this formula uses a telescoping product:

(2.14)
N∏
n=0

(1 +X2n) =
N∏
n=0

1−X2n+1

1−X2n
=

1−X2N+1

1−X
=

2N+1−1∑
n=0

Xn.

Thus, the partial products are a subsequence of the partial sums of (1 −X)−1, and
so converge to it. Alternatively,

N∏
n=0

(1 +X2n)− (1−X)−1 = −X2N+1

(1−X)−1

and ord(−X2N+1
(1−X)−1) = 2N+1 →∞.

One final point on pathologies. We want to define generating functions with two
“variables”:

(2.15)
∑
i,j

ai,jX
iY j, ai,j ∈ R.

Define the order of the term ai,jX
iY j to be i+ j and define convergence in the same

way we did before. This gives the formal power series ring R[[X, Y ]]. It is clear that
we can sum for fixed i or for fixed j first and show that R[[X, Y ]] = (R[[Y ]])[[X]] =
(R[[X]])[[Y ]]; that is, a formal power series in one variable whose coefficients are
formal power series in the other variables. Well, technically, no. These formal power
series rings are isomorphic, but they’re not equal, and the isomorphism is something
awfully close to the identity map:∑

i,j

ai,jX
iY j ↔

∞∑
j=0

(
∞∑
i=0

ai,jX
i

)
Y j ↔

∞∑
i=0

(
∞∑
j=0

ai,jY
j

)
X i.

(This is the sort of fine distinction that repelled me from algebra in grad school, until
I realized that algebraists don’t let these distinctions bother them.)
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We give a simple expression of the power of generating functions. Observe that

(2.16)
1

1−X − Y
=
∞∑
n=0

(X + Y )n =
∞∑
n=0

n∑
k=0

(
n

k

)
XkY n−k =

∞∑
k=0

∞∑
`=0

(k + `)!

k!`!
XkY `.

At the same time, algebraic manipulation yields

(2.17)

1

1−X − Y
=

1

1−X
· 1

1− Y (1−X)−1

=
1

1−X
·
∞∑
m=0

Y m

(1−X)m
=

∞∑
m=0

Y m

(1−X)m+1

On equating the coefficient of Y m in (2.16) and (2.17), we see that

(2.18)
1

(1−X)m+1
=
∞∑
k=0

(k +m)!

k!m!
Xk =

∞∑
k=0

(
k +m

m

)
xk.

This familiar and extremely useful expression can be readily derived in many different
ways, both combinatorial and analytical, and will show up later in this chapter.

Complications show up when we take infinite products, and to avoid them, we’ll
visualize the summation as taking place over all terms of fixed order first; that is,

(2.19)
∑
i,j

ai,jX
iY j :=

∞∑
n=0

(
n∑
i=0

ai,n−iX
iY n−i

)
.

A product such as ∑
i,j

ai,jX
iY j =

∞∏
n=1

(1 +Xn + Y n)

only converges if thought of in this way, since upon viewing this as an element in
R([[Y ]])[[X]], say, as

∏
(1 + gn), the order of gn = Xn + Y n as an element of R[[Y ]]

is 0, because Y n is in the base ring, and so the infinite product does not converge
according to our definition. (One way to resolve the conflict is to change the definition
of convergence in R([[Y ]])[[X]], using the topology we’ve defined for R[[Y ]].) In
(2.19), ai,j counts the number of partitions of i and j into distinct parts so that no
part appears in both partitions.

2.3. Partitions. Partition generating functions are based on a simple idea. Suppose
A = {0 = a0 < a1 · · · < am} is a finite subset of N. We define the characteristic
generating function IA by

(2.20) IA =
∑
a∈A

Xa =
m∑
j=0

Xaj = 1 +
m∑
j=1

Xaj .
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If A and B are two such finite subsets, then IA and IB are finite sums; compute

(2.21)
∞∑
n=0

cnX
n = IAIB =

m∑
j=0

Xaj
∑̀
k=0

Xbk =
m∑
j=0

∑̀
k=0

Xaj+bk .

It follows from (2.21) that cn is the number of ways to write n = a+ b, a ∈ A, b ∈ B.
(If, say, a0 > 0, consider the set A′ = {ai − a0}; the number of representations of
n− a0 from A′ and B is equal to the number of n from A and B, etc.)

What if A and B are infinite? No problem. Fix n and let A(n) = A ∩ {0, 1, . . . , n}
and B(n) = B ∩ {0, 1, . . . , n}. If n = a + b with a ∈ A and b ∈ B, then 0 ≤ a, b ≤ n,
so a ∈ A(n), b ∈ B(n) and so cn is the coefficient of Xn in IA(n)IB(n) . On the other
hand, the orders of IA − IA(n) and IB − IB(n) are both larger than n, hence so is the
order of IAIB − IA(n)IB(n) . Therefore, cn is the coefficient of Xn in IAIB as well.

What if there are r sets, A1, . . . , Ar? The same logic applies in terms of a finite
sets, and the generalization to infinite sets Ak, 1 ≤ k ≤ r, follows in the same way.

What if there are infinitely many sets Ak? Here we need to place a restriction on
the smallest non-zero element, because we want cn to be finite: for each n, there exist
only finitely many Ak’s which contain n. With this restriction, the computation of
cn becomes a count of representations of n as a sum from a finite number of sets.

To sum up, we have the following theorem.

Theorem 2.2. Suppose there exist finite or infinite sets Ak ⊆ N,

Ak = {0 = ak,0 < ak,1 < · · · },

either for k = 1, · · · ,M , or for k ∈ N, under the condition that lim
k→∞

ak,1 =∞. Then

∏
k

IAk
=
∞∑
n=0

cnX
n ∈ Z[[X]],

where cn is the number of ways to write

n = a1,r1 + a2,r2 + · · · , ak,rk ∈ Ak.

The same argument applies to subsets Ak ⊂ Nd containing 0, with (a1, . . . , ad) asso-
ciated to Xa1

1 · · ·X
ad
d , given that the minimum order of the non-constant terms is also

going to ∞ as k increases. In this case, the generating function is in Z[[X1, . . . , Xd]].
We skip the details.

In the most famous application of Theorem 2.2, let Ak = {0, 2k}, k ≥ 0. By (2.13),

(2.22)
∞∏
k=0

Ik =
∞∏
k=0

(1 +X2k) =
1

1−X
=
∞∑
n=0

Xn,
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recovering the economically useful fact that every non-negative integer n has a unique
representation of the form

n =
∞∑
k=0

εk(n)2k, εk(n) ∈ {0, 1}.

Now let

b(n) :=
∞∑
k=0

εk(n)

denote the sum of the binary digits of n, and consider the infinite product

(2.23) Ψ(X, Y ) =
∞∏
k=0

(1 +X2k · Y ) =
∑
i,j

ai,jX
iY j.

(This is a natural example of convergence in (C[[Y ]])[[X]] but not in (C[[X]])[[Y ]].)
Think of this as a partition problem from sets {(0, 0), (2k, 1)}; each XnY m occurs
exactly once as a sum, when m = b(n). That is,

(2.24)

Ψ(X, Y ) =
∞∑
n=0

Y b(n)Xn

=
∞∑
m=0

am(X)Y m, where am(X) =
∑

0≤i1<i2<···<im

X2i1 + · · ·+X2im .

Notice that if we replace Y by a numerical parameter λ, we get a valid expansion
formula for a generating function in one variable:

(2.25)
∞∏
k=0

(1 + λX2k) =
∞∑
n=0

λb(n)Xn.

We’ll apply this to the Stern sequence.
If A = {1 ≤ a0 < a1 < · · · } ⊆ Z, then a partition of n from A is a sum n =

ai0 +ai1 + · · · in which i0 ≤ i1 ≤ · · · .. Let pA(n) be the number of such sums. Let mk

count the number of times that ak appears in a given partition, so that n =
∑
mkak.

We are thus in the situation of Theorem 2.2, with Ak = akN = {0, ak, 2ak . . . }. It
follows that the generating function for pA(n) is

(2.26)
∏
k≥0

(1 +Xak +X2ak + . . . ) =
∏
k≥0

1

1−Xak
=
∞∑
n=0

pA(n)Xn.

A partition of n into distinct parts is one in which each ak occurs at most once, so
Ak = {0, ak}. The generating function for pA,d(n), the number of partitions of n into
distinct parts from A is

(2.27)
∏
k≥0

(1 +Xak) =
∞∑
n=0

pA,d(n)Xn.
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One of the most beautiful classical theorems in partition theory goes back to Euler:
p2N+1(n) = pN,d(n). In words, the number of partitions of n into odd parts is equal
to the number of partitions of n into distinct parts. The best proof is bijective; the
one below, however, uses the ideas of this section and the identity 1 + t = 1−t2

1−t :

(2.28)
∞∏
k=1

(1 +Xk) =
∞∏
k=1

1−X2k

1−Xk
=

∞∏
k=1

(1−X2k)

∞∏
k=1

(1−Xk)
=
∞∏
j=0

1

1−X2j+1
.

In the final step of (2.28), the terms with even exponents in the numerator cancel
out in the denominator, leaving the terms with odd exponents.

2.4. Return to Stern. Remember the Stern sequence? Let

(2.29)
S(X) =

∞∑
n=0

s(n)Xn = XT (X);

S(X) = X +X2 + 2X3 +X4 + · · · , T (X) = 1 +X + 2X2 +X3 + · · · .
(We can define T (X) in this way because s(0) = 0 and ord(S(X)) = 1.) We have
already shown that 1 ≤ s(n) ≤ n, hence lim(s(n))1/n = 1 and so S(z) has radius of
convergence 1 as an analytic function, and similarly for T (z).

By breaking up the sum into even and odd indices, and using the recurrence, we
obtain a functional equation satisfied by S(X):

(2.30)

S(X) =
∞∑
n=0

s(2n)X2n +
∞∑
n=0

s(2n+ 1)X2n+1

=
∞∑
n=0

s(n)X2n +
∞∑
n=0

s(n)X2n+1 +
∞∑
n=0

s(n+ 1)X2n+1

= S(X2) +XS(X2) +X−1S(X2).

The expression X−1S(X2) is a legitimate formal power series, because ord(S(X2)) =
2. Rewrite (2.30) as:

(2.31)
S(X) = (1 +X +X−1)S(X2)

=⇒ XT (X) = (1 +X +X−1)X2T (X2).

It now follows that

(2.32)
T (X) = (1 +X +X2)T (X2);

XS(X) = (1 +X +X2)S(X2).

The functional equation for T can be iterated N times to give

(2.33) T (X) =

(
N−1∏
k=0

(
1 +X2k +X2·2k

))
· T (X2N ),
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Since T (X2N ) = 1 + gN , where ord(gN) = 2N , it follows that T (X2N )→ 1, and so

(2.34) S(X) = XT (X) = X
∞∏
k=0

(1 +X2k +X2k+1

).

The coefficient of Xn in T (X) is s(n − 1) and by Theorem 2.2 and (2.33), T (X) is
the generating function of sums from the sets {0, 2k, 2 · 2k}. This provides another
proof of Theorem 1.8.

We can now play with the generating function and derive a number of new, and
rather unexpected, identities involving Ψ(X, Y ), cf. (2.24). Define

(2.35) B(X) = Ψ(X,−1) =
∞∏
j=0

(1−X2j) =
∞∑
n=0

(−1)b(n)Xn.

Since 1 + t+ t2 = 1−t3
1−t , it follows that

(2.36) S(X) = X
∞∏
j=0

(1 +X2j +X2j+1

) = X
∞∏
j=0

1−X3·2j

1−X2j
= X · B(X3)

B(X)
.

Thus,

(2.37) B(X)S(X) = XB(X3),

We read off the coefficient of X3k+r on both sides of (2.37), r = 0, 1, 2, to obtain
some peculiar recurrences:

3k+r∑
j=0

(−1)b(3k+r−j)s(j) = 0, (r = 0, 2),
3k+1∑
j=0

(−1)b(3k+1−j)s(j) = (−1)b(k).

The so-called binary partition function, b(n,∞), has been studied since Euler, with
revived interest by Churchhouse and others since the 1960s. Let A2 = {2k : k ≥ 0},
and let b(n,∞) = pA2(n). Then

(2.38) B∞(X) :=
∞∑
n=0

b(n,∞)Xn =
∞∏
k=0

1

1−X2k
=

1

B(X)
.

In Stern terms,

(2.39) S(X) = X · B∞(X)

B∞(X3)
=⇒ S(X)B∞(X3) = X · B∞(X).

Again, taking the coefficient of Xn on both sides of (2.39), we get

(2.40)

bn/3c∑
j=0

s(n− 3j)b(j,∞) = b(n− 1,∞).

The binary partition functions have an interesting alternative interpretation due to
Neil Sloane and James Sellers as “non-squashing stacks of boxes”. Suppose one has
an unlimited supply of boxes labeled with positive integers, so that a box labeled i
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both weighs i units and can support a stack of boxes above it of total weight i. How
many different “non-squashing” stacks are there of total weight n? In other words,
how many partitions are there of n in which each part is at least as large as the sum
of the previous parts. Putting this symbolically,

(2.41) n = a1 + a2 + · · ·+ ar; a1 + · · ·+ aj ≤ aj+1, 1 ≤ j ≤ r − 1.

We first fix the number of parts, r, and reparameterize:

(2.42)
a1 = b1, a2 = b1 + b2, a3 = a1 + a2 + b3 = 2b1 + b2 + b3,

a4 = b1 + b2 + b3 + b4 = 4b1 + 2b2 + b3 + b4, · · ·

The conditions of the problem require b1 ≥ 1 and bi ≥ 0 for i ≥ 2. A comparison of
(2.42) with (2.41) and an omitted inductive argument imply that

n = 2r−1b1 + 2r−2b2 + · · ·+ 2br−1 + br.

This is a partition of n into powers of 2 with largest part 2r−1. Summing over r shows
that the number of partitions of n satisfying (2.41) is equal to b(n,∞).

Another application of the functional equation (2.32) leads to a rapid proof of
Exercise 7 from Chapter 1:

XS(X) = (1 +X +X2)S(X2) =⇒ X(1−X)S(X) = (1−X3)S(X2)

=⇒ S(X)

1−X3
=

1

X
· S(X2)

1−X
.

These expressions can be identified via (2.3):

(2.43)

S(X)

1−X3
= S(X)(1 +X3 +X6 + · · · ) =

∞∑
n=0

bn/3c∑
j=0

s(n− 3j)

Xn;

1

X
· S(X2)

1−X
=

1

X
· (s(0) + s(1)X2 + s(2)X4 + · · · )(1 +X +X2 + · · · )

=
1

X
· (S(0)(1 +X) + S(1)(X2 +X3) + S(2)(X4 +X5) + · · · )

= S(1)(X +X2) + S(2)(X3 +X4) + · · · =
∞∑
n=0

S(dn
2
e)Xn.

It follows from (2.43) that

bN/3c∑
j=0

s(N − 3j) = S(dn
2
e).

The following observation is due to Richard Stanley, from a conversation with the

author on the second floor of Illini Hall in the 1980’s. Let ε = eπi/3 = 1
2

+ i
√
3

2
; ε is a
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primitive 6-th root of unity, and (1 + εx)(1 + ε−1x) = 1 + x+ x2. It follows that

(2.44)

S(X) = X

∞∏
j=0

(1 + εX2j)
∞∏
j=0

(1 + ε−1X2j) = X
∞∑
i=0

εb(i)X i

∞∑
j=0

ε−b(j)Xj

=⇒ s(n) =
n−1∑
k=0

εb(k)−b(n−1−k).

Thus,

(2.45) 2s(n) =
n−1∑
k=0

ε(b(k)−b(n−1−k)) + ε−(b(k)−b(n−1−k)).

Now εj + ε−j = 2, 1,−1,−2 when j ≡ 0,±1,±2, 3 (mod 6), and the sum on the right
is not a priori positive. This suggests some unexpected patterns in (b(m)) mod 6.

Replacing {0, 1, 2} with {0, 1, 2, 3} gives a much easier problem to analyze. Let
f4(n) denote the number of ways to write n as

(2.46) n =
∞∑
i=0

εi2
i, εi ∈ {0, 1, 2, 3}.

As we have seen,

(2.47)

∞∑
n=0

f4(n)Xn =
∞∏
j=0

(1 +X2j +X2·2j +X3·2j)

=
∞∏
j=0

1−X2j+2

1−X2j
=

∏∞
j=2(1−X2j)∏∞
j=0(1−X2j)

=
1

(1−X)(1−X2)
.

Here are two ways to look at this sum to get the exact value: f4(n) = bn
2
c+ 1:

1

(1−X)(1−X2)
=

1

1−X
(
1 +X2 +X4 + · · ·

)
= 1 +X + 2X2 + 2X3 + 3X4 + · · · ;

1

(1−X)(1−X2)
=

1

(1−X)2(1 +X)
=

1/4

1 +X
+

1/4

1−X
+

1/2

(1−X)2

=
∞∑
n=0

(
1
4
(−1)n + 1

4
+ n+1

2

)
Xn =

∞∑
n=0

(
n
2

+ 3+(−1)n
4

)
Xn

=
∞∑
n=0

(⌊n
2

⌋
+ 1
)
Xn.



STERN NOTES, MATH 595, SPRING 2012 13

A combinatorial explanation for the value of f4(n) is to write εi = 2αi + βi in (2.46),
with αi, βi taken independently in {0, 1}, and then observe that

n =
∞∑
i=0

εi2
i =

∞∑
i=0

(2αi + βi)2
i = 2

∞∑
i=0

αi2
i +

∞∑
i=0

βi2
i.

Thus a representation of n in (2.46) can be bijectively associated with a representation
n = 2n′+n′′ for n′, n′′ ≥ 0; there are bn

2
c+1 possible choices for n′. The computation

of f4(n) was Problem B2 on the 1983 Putnam.
This discussion can be generalized by taking 2r − 1 for 3, and we will later show

that b(n,∞) grows more rapidly than any polynomial.
Finally, as another harbinger of a later chapter, we look at the generating function
S(X) over R = Z/2Z to get a quick proof that 2 | s(n) ⇐⇒ 3 | n. Keep in mind
that 1 = −1 in R, so 1 +X +X2 = 1−X +X2 and it’s possible to rewrite (2.39) as

(2.48)

S(X) = X
∞∏
j=0

(1 +X3·2j)
∞∏
j=0

1

1 +X ·2j

= X · 1

1−X3
· (1−X) =

X +X2

1−X3
= (X +X2)(1 +X3 +X6 + . . . ).

We haven’t found any useful versions mod d for d ≥ 3; however, 1+X+X2 ≡ (1−X)2

mod 3, so

S(X) ≡ X

(
∞∑
n=0

(−1)b(n)Xn

)2

(mod 3).

2.5. Some asymptotics. We want to discuss the behavior of S(z) and we first need
some general asymptotic facts about power series with positive real coefficients. In
this section, for an integer m ≥ 0, let

(2.49) f(z) =
∞∑
n=0

anz
n, fm(z) =

∞∑
n=m

anz
n, an > 0.

We are particularly interested in statements such as

lim
x→1−

(1− x)λf(x) = c > 0,

in which the limit is taken over real x→ 1 and real λ > 0.
Fact 1: If m is a positive integer, then

(2.50) lim
x→1−

(1− x)λf(x) = c ⇐⇒ lim
x→1−

(1− x)λfm(x) = c.

The reason is that the omitted m terms are a polynomial which is being multiplied
by something going to 0; this finite sum does not affect the limit. The same result
holds if lim is replaced by lim inf or lim sup and for the same reasons.
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Now let

(2.51) g(z) =
∞∑
n=0

bnz
n, gm(z) =

∞∑
n=m

bnz
n, bn > 0.

Fact 2: If an ≤ bn, then f(x) ≤ g(x) pointwise, and so (1− x)λf(x) ≤ (1− x)λg(x).
Taking the various limits, we find that

(2.52)

lim inf
x→1−

(1− x)λf(x) ≤ lim inf
x→1−

(1− x)λg(x),

lim sup
x→1−

(1− x)λf(x) ≤ lim sup
x→1−

(1− x)λg(x).

If one or both of the limits actually exists, then these statements become stronger.

Lemma 2.3. If an, bn > 0, (2.49) and (2.51) hold and

(2.53) lim
n→∞

bn
an

= 1,

then

(2.54) lim
x→1−

(1− x)λf(x) = c =⇒ lim
x→1−

(1− x)λg(x) = c.

Proof. Pick ε > 0 and assume ε < 1. There exists N so that for n ≥ N , an(1− ε) ≤
bn ≤ an(1 + ε), hence for x ∈ (0, 1),

(1− ε)(1− x)λfN(x) ≤ (1− x)λgN(x) ≤ (1 + ε)(1− x)λfN(x).

Taking the limit as x→ 1−, it follows from Fact 2 that

c(1− ε) ≤ lim inf
x→1−

(1− x)λgN(x) ≤ lim sup
x→1−

(1− x)λgN(x) ≤ c(1 + ε).

Thus, by Fact 1,

(2.55) c(1− ε) ≤ lim inf
x→1−

(1− x)λg(x) ≤ lim sup
x→1−

(1− x)λg(x) ≤ c(1 + ε).

Since ε > 0 is arbitrary in (2.55), (2.54) is established. �

We have already seen the power series for (1− x)−m for m ∈ N in (2.18), but will
need it for other m; Taylor series come to the rescue. Observe that ((1 − x)−ν)′ =
ν(1− x)−(ν+1), from which it follows that for κ ∈ R,

(2.56)
1

(1− z)κ
= 1 +

∞∑
n=1

κ · (κ+ 1) · · · (κ+ (n− 1))

n!
zn := 1 +

∞∑
n=1

A(κ;n)zn.

We are interested in the growth of the coefficient A(κ;n) in n for fixed κ. When
κ = m+ 1 ∈ N, this is clear:

(2.57)
A(m+ 1;n) =

(m+ n)!/m!

n!
=

(n+m)!/n!

m!

=
(n+ 1)(n+ 2) · · · (n+m)

m!
=⇒ lim

n→∞

A(m+ 1;n)

nm/m!
= 1.
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The Gamma function with positive arguments seems unavoidable, and comes with
good asymptotics. Recall that for t > 0,

(2.58)

Γ(t) =

∫ ∞
0

xt−1e−x dx, Γ(t+ 1) = tΓ(t), Γ(m+ 1) = m!;

lim
t→∞

Γ(t+ 1)√
2π · e−ttt+1/2

= 1.

The natural Gamma function generalization of (2.57) is valid.

Theorem 2.4.

(2.59) lim
n→∞

A(λ+ 1;n)

nλ/Γ(λ+ 1)
= 1.

Proof. First observe that

(2.60) A(λ+ 1;n) =
(λ+ 1)(λ+ 2) · · · (λ+ n)

n!
=

Γ(λ+ n+ 1)/Γ(λ+ 1)

n!
,

so (2.59) is equivalent to

(2.61) lim
n→∞

Γ(λ+ n+ 1)

nλn!
= 1.

By multiplying limits and using (2.58), we see that the left-hand side of (2.61) be-
comes

lim
n→∞

((√
2π · e−(n+λ)(n+ λ)n+λ+1/2

)
n−λ

(
1√

2π · e−nnn+1/2

))
= lim

n→∞

(
e−λ

(
n+ λ

n

)n(
n+ λ

n

)λ+1/2
)

= e−λ · eλ · 1 = 1.

�

Corollary 2.5.

(2.62) lim
x→1−

(1− x)λ+1

(
∞∑
n=0

nλxn

)
= Γ(λ+ 1).

Proof. By (2.56),

(2.63) (1− x)λ+1

(
Γ(λ+ 1) +

∞∑
n=0

Γ(λ+ 1)A(λ+ 1;n)xn

)
= Γ(λ+ 1).

By Lemma 2.3 and Theorem 2.4, we may replace Γ(λ+ 1)A(λ+ 1;n) in (2.63) by nλ

without affecting the limit. �
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2.6. Applications to the Stern sequence. Remember the Stern sequence? Con-
sider

(2.64) S(z) =
∞∑
n=0

s(n)zn.

It’s far from clear how to apply this discussion to S(z), because of the irregular
behavior of the growth of (s(n)). However,

(2.65) (1− z)−1S(z) =
∞∑
n=0

(
n∑
k=0

s(k)

)
zn =

∞∑
n=0

S(n)zn,

and we can say something about the growth of S(n). In fact, S(2r) = 1
2
(3r + 1), so

by the monotonicity of S, if n ∈ Ir, then

(2.66) 2r ≤ n ≤ 2r+1, 1
2
(3r + 1) ≤ S(n) ≤ 1

2
(3r+1 + 1).

Since log2 n− 1 ≤ r ≤ log2 n, without trying to be very careful, we see that

(2.67) 1
6
nγ + 1

2
≤ S(n) ≤ 3

2
nγ + 1

2
, γ =

log 3

log 2
≈ 1.585.

Why aren’t we careful in the estimate? We have seen that S(2r) = 1
2
(3r + 1) and it

will be an exercise (easy!) to show that S(3 · 2r−1) = 3r + 1. This means that

(2.68)
S(2r)

(2r)γ
→ 1

2
= .5,

S(3 · 2r−1)
(3 · 2r−1)γ

→
(

2

3

)γ
≈ .525899.

In other words, limn→∞ n
−γs(n) does not exist; (2.66) implies that there exist α > 0

and β so that

(2.69) α ≤ s(n)

nγ
≤ β.

The best we can hope from Corollary 2.5 are upper and lower bounds on the growth.
By combining (2.69) with the results of the last two sections, and keeping in mind
that the estimates apply to (1 − z)−1S(z). we obtain the following corollary, which
is improved in the next section as Theorem 2.10.

Corollary 2.6. We have the following estimate on S(x) as real x→ 1−:

(2.70)
αΓ(γ + 1)(1 + o(1))

(1− x)γ
≤ S(x) ≤ βΓ(γ + 1)(1 + o(1))

(1− x)γ
.

Proof. It follows from (2.69) and Lemma 2.3 that

α
∞∑
n=0

nγxn ≤
∞∑
n=0

S(n)xn ≤ β

∞∑
n=0

nγxn.

Now use Corollary 2.5 with λ = γ, and multiply by (1− x)−1. �



STERN NOTES, MATH 595, SPRING 2012 17

To provide a numerical version of (2.70), Mathematica tells us that Γ(γ + 1) ≈
1.41364. Numerical evidence suggests that for t close to 1, (1 − t)γS(t) oscillates in
the range .725189± .000003. Comparison with (2.70) suggests that

(2.71)
S(n)

nγ
≈ .512992± .000002.

This is amazingly close to halfway between the values in (2.68).
We could also guess the order of growth of T (x), using the functional equation

T (z) = (1 + z + z2)T (z2). Let z = 1− ε/2 where ε ≈ 0, so that, in practical terms,
z2 = 1 − ε and 1 + z + z2 ≈ 3. Then T (1 − ε/2) ≈ 3T (1 − ε). The “nice” function
f(1− t) = φ(t) satisfying f(1− ε/2) = 3f(1− ε) is φ(t) = c(1− t)γ for some c.

In the next section, we will make the previous remarks more rigorous as we give a
more detailed analysis of the behavior of |S(te2πiα)| for fixed α as real t→ 1−.

2.7. Computations. Warning: the material in this section is subject to
improvement, revision and/or retraction! First note that |S(z)| = |z||T (z)|, so
as |z| → 1, it doesn’t matter much which function is used; |T (z)| will be estimated
here. In this section t is always a real number in (0, 1).

Our first step is to give an admittedly peculiar-looking “ruler” to measure |z|. Let

(2.72) σ(t) = − log2(log2(t
−1)); σ(t) = m ⇐⇒ t := tm = 2−2

−m

.

Reading from the inside out, σ maps (0, 1) to (∞, 1) to (∞, 0) to (∞,−∞) to
(−∞,∞) in a monotone way, with the delightfully useful property that

(2.73) σ(t2) = σ(t)− 1 =⇒ t2m = tm−1.

It follows from (2.32) and (2.33) that for any positive integer v,

(2.74) T (tm) =
∞∏
j=0

(1 + tm−j + tm−j−1) =
v−1∏
j=0

(1 + tm−j + tm−j−1) · T (tm−v).

It’s worth noting that as m → −∞, tm → 0 at a doubly exponential rate: t−5 ≈
2.33× 10−10. But as m→∞, the growth to 1 is only singly exponential:

(2.75) 1− log 2

2m
+

(log 2)2/2

22m
> tm > 1− log 2

2m
.

The midpoint of the ruler is t0 = 1
2
.

Our second step is to show that in numerical work, we may safely ignore the terms
in the infinite product involving tm when m is very negative.

Lemma 2.7. For |z| < 1,

(2.76) |T (z)− 1| ≤ |z|
(1− |z|)2

;

in particular,

|z| < 1

4
=⇒ |T (z)− 1| ≤ 2|z|.
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Proof. It is easy to show that for n ≥ 2, s(n) ≤ n− 1, hence

|T (z)− 1| =

∣∣∣∣∣
∞∑
n=1

s(n+ 1)zn

∣∣∣∣∣ ≤
∞∑
n=1

n|z|n =
|z|

(1− |z|)2
.

If |z| ≤ 1
4
, then (1− |z|)2 ≥ 9

16
> 1

2
. �

What this means is that stopping the infinite product in (2.74) when v = dme+ 5
gives T (tm) as a finite product of polynomials times T (tm−v), where m − v ≤ −5,
so that tm−v <

1
2
· 10−9 and so |1 − T (tm−v)| ≤ 10−9. For most numerical purposes,

|T (tm)| can be identified as this finite product.
An important consequence of Lemma 2.7 is that T (z) 6= 0 in the open unit disk:

Corollary 2.8. If |z| < 1, then T (z) 6= 0.

Proof. If |z| < 1
3
, then (2.76) implies that |T (z) − 1| ≤ 3

4
, so T (z) 6= 0 for |z| < 1

3
.

Suppose T (z) 6= 0 for |z| < ρ. Since 1 + z + z2 has no zeros inside the unit circle,
T (z) = (1+z+z2)T (z2) implies that T (z) 6= 0 for |z| < ρ1/2, and hence by induction
for |z| < ρ1/2

n
. This is true for all n and completes the proof. �

A more precise version of Corollary 2.6 requires a classical lemma.

Lemma 2.9. If
∑∞

n=0 |an| = M <∞, then
∏∞

n=0(1 + an)→ p > 0.

Proof. First define the partial products

pn =
n∏
k=0

(1 + ak) ⇐⇒ log pn =
n∑
k=0

log(1 + an).

Since an → 0 and
∑
|an| <∞,

∑
n log(1+an) converges by the Bounded Comparison

test. It follows that (elog pn) converges to a positive value. �

We now discuss T (t) for real t→ 1−; a first observation is that (2.34) implies that
T (t) is an increasing positive real function in t. For real m ≥ 0, let

(2.77) h(m) = (1− tm)γT (tm).

We saw in Corollary 2.6 that h(m) is a bounded function as m→∞. We now show
that, in the limit, it is a periodic function with period 1.

Theorem 2.10. There is a positive function ψ, defined on [0, 1) so that for fixed
α ∈ [0, 1) and integral k,

(2.78) lim
k→∞

h(k + α) = ψ(α).

Proof. Write

h(k + α) = h(α)
k∏
j=1

h(j + α)

h(j − 1 + α)
,
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and consider the convergence of the infinite product

(2.79)
∞∏
j=1

h(j + α)

h(j − 1 + α)
.

Let u = tj+α in (2.79), so u2 = tj−1+α, and recall that 3
2
< γ < 2 by (2.67). Then

(2.80)
h(j + α)

h(j − 1 + α)
=

(1− tj+α)γT (tj+α)

(1− tj−1+α)γT (tj−1+α)
=

(1− u)γ

(1− u2)γ
· T (u)

T (u2)
=

1 + u+ u2

(1 + u)γ
.

Since j+α ≥ 0, u ≤ 1
2
, so 1 +u+u2 ≤ 1 + 3

2
u < 1 + γu < (1 +u)γ, hence each factor

in the infinite product is < 1. For the other inequality, write u = 1− 2w. Then

(2.81)
1 + u+ u2

(1 + u)γ
=

3− 6w + 4w2

(2− 2w)γ
>

3(1− w)2

2γ(1− w)γ
= (1− w)2−γ > 1− w.

But by (2.75),

(2.82) 1− w =
1 + u

2
> u > 1− log 2

2j+α
.

The factors in (2.79) are then 1 +O(2−j), and so the infinite product converges to a
positive limit by Lemma 2.9. �

The numerical evidence suggests that

(2.83) .7251918 ≥ ψ(α) ≥ .7251858.

The next estimate we wish to consider is |T (ωt)| for ω = e2πi/3, which has a rad-

ically different behavior. Since s(n) is real, T (z̄) = T (z), hence |T (ωt)| = |T (ω2t)|,
and it doesn’t matter which primitive cube root we use.

How does T (ωt) behave as t → 1−? For k ∈ Z, 1 + ω2k + ω2k+1
= 1 + ω(−1)k +

ω(−1)k+1
= 0. It is plausible that S(ωt) should go to zero rapidly. Helpfully,

(2.84) |1 + tω+ t2ω2|2 = |1 + tω2 + t2ω|2 =
(
1− t+t2

2

)2
+ 3

4

(
t− t2

)2
= (1− t)(1− t3).

It follows that |1 + tω+ t2ω2| is decreasing quadratically to 0 as t increases to 1−. In
particular, the factor is decreasing for increasing m in tm, so that

(2.85) |T (ωtm)| =
∞∏
j=0

(1− tm−j)1/2(1− t3m−j)1/2

is decreasing in increasing m. The asymptotics is clumsy; it is easier to describe
|T (ωtm)| as a function of m than to describe |T (ωtm)| as a function of tm. Let

(2.86) Υ(m) =
(3/2)m/2(log 2)m

2m2/2
,

and let

(2.87) v(m) = Υ(m)−1|T (ωtm)|.
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Theorem 2.11. There is a positive function η, defined on [0, 1) so that for fixed
α ∈ [0, 1) and integral k,

(2.88) lim
k→∞

v(k + α) = η(α).

Proof. As before, fix α and write

v(k + α) = v(α)
k∏
j=1

v(j + α)

v(j − 1 + α)
;

again, we wish to show that the infinite product converges. But

v(j + α)

v(j − 1 + α)
=

Υ(j − 1 + α)

Υ(j + α)
· |T (ωtj+α)|
|T (ωtj−1+α)|

=
2j+α−1/2√
3/2(log 2)

(1− u)(1 + u+ u2)1/2 =
1− u

(log 2)/2j+α
·
√

1 + u+ u2√
3

,

where u = tj+α ≈ 1 − (log 2)/2(j+α). A computation, which we omit, shows that
v(j+α)
v(j−1+α) = 1 +O(2−j), hence, as was the case with Theorem 2.10, Lemma 2.9 implies

that the series converges. �

For numerical reference, |T (ω/2)| ≈ .549 and
√

3/2(log 2) ≈ .849. Theorem 2.11
implies that |T (ωtm)| goes to zero faster than any polynomial in 1−tm. The numerical
evidence suggests that the range of η(α) is roughly .2838218± .0000002.

Let ζd = e2πi/d be a primitive d-th root of unity. There is a strong connection
between T (z) and T (ζ`2rz). For convenience, note that ζ`2

j

2r = ζ`2r−j .

Lemma 2.12. For r ∈ N and ` ∈ Z,

(2.89) T (ζ`2rz) =
r−1∏
j=0

(
1 + ζ2

j`
2r z + ζ2

j+1`
2r

1 + z2j + z2j+1

)
T (z).

Proof. This follows from (2.33) and ζ2
k

2r = 1 for k ≥ r; all but the first r factors in
the infinite products for T (ζ`2rz) and T (z) are the same. �

Theorem 2.13. For any fixed (`, r), and real t→ 1−, there exist non-zero constants
α(`, r), β(`, r) so that α(`, r) ≤ (1− t)γT (ζ`2rt) ≤ β(`, r).

Proof. Write (2.89) as

(2.90) T (ζ`2rz) =
A(z)

B(z)
T (z).

Observe that A(z) and B(z) are both (bounded) polynomials, and B(ζ`2m) 6= 0, since

1 + z2
j

+ z2
j+1

= 0 implies that z2
j ∈ {ω, ω2}. Thus, M ≥ |A(z)

B(z)
| > ε > 0 for suitable

M, ε > 0, and the result follows from Theorem 2.10. �
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It follows that |T (eiαt)| → ∞ on a dense set of rays, those with angles α = 2π`
2r

.
A similar argument would show that the asymptotic behavior of |T | is the same (up
to multiplicative constants) on any two rays whose angles differ by a multiple of 2π

2r
,

unless B(z) might be zero. Fortunately, these cases are covered by Theorem 2.11.

Theorem 2.14. Suppose gcd(`, 3) = 1. Then

(2.91) lim
x→1−

|T (e2πi·
`

3·2r x)| = 0.

Proof. Observe that e2πi·
`
3 = ω or ω2. Without loss of generality, choose the former.

Since each of the factors in (2.33) is bounded by 3 in absolute value,

(2.92) |T (e2πi·
`

3·2r x)| ≤ 3r|T (ωx2
r

)|.

The upper bound goes to zero quite rapidly. �

Thus, |T (eiαx)| → 0 on a different dense set of rays, those whose angles are α = 2π`
3·2r .

The behavior on other rays is likely to be difficult to understand. If α = 2πp
q

, where

q ≥ 5 is odd and gcd(p, q) = 1, we can say something, because 2φ(q)p ≡ p (mod q).
Observe that, as m→∞, 1 + tme

iθ + tm−1e
2iθ → 1 + eiθ + e2iθ and

(2.93)
T (tm+φ(q)e

iα)

T (tmeiα)
→

φ(q)−1∏
j=0

(1 + e2πi(2
jp/q) + e2πi(2

j+1p/q)) =

φ(q)−1∏
j=0

1− e2πi·3·(2jp/q)

1− e2πi·(2jp/q)
.

It is difficult to say much about the set of q to which the hypothesis of the following
observation hold. A careful analysis is still to be written.

Suppose q ≥ 5 is odd and there exists s so that 2s ≡ 3 (mod q) or 2s ≡ −3 (mod q).
Then |T (xe2πip/q)| should be bounded as x→ 1−. Consider the quotient in (2.93),

(2.94)

φ(q)−1∏
j=0

1− e2πi·3·2jp/q)

1− e2πi·(2jp/q)
.

If 2s ≡ 3 (mod q), then the factors in the numerator of (2.94) are a permutation
of the factors in the denominator, and so the product is 1, which suggests that,
asymptotically, T (eiαtm) should approach periodicity in m with period dividing φ(q).
If 2s ≡ −3 (mod q), then the factors in the numerator of (2.94) are a permutation of
the conjugates of the factors in the denominator, so the absolute value of the product
is 1, which suggests that, asymptotically, |T (eiαtm)| should approach periodicity in
m with period dividing φ(q). These hypotheses are satisfied if 2 is a primitive root
mod q, the study of which is a famous and extremely difficult question, and they
obviously cannot be satisfied if 3 | m. Of the odd integers 6t ± 1 ≤ 100, only
17, 31, 41, 43, 65, 73, 85, 89 do not satisfy this criterion.
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The discussion of |T (z)| on rays is complemented by a discussion on |z| = r. Since
T (z) is analytic and non-zero on the unit disk, we have by Jensen’s formula,

(2.95) 0 = log |T (0)| = 1

2π

∫ 2π

0

log |T (reiθ)| dθ, 0 ≤ r < 1.

It all balances out. Let χ(r) denote the number of θ ∈ [0, 2π) for which |T (reiθ)| = 1.
One expects the number of these “crossings” to grow quite rapidly as r → 1−.

Finally, it follows from Corollary 2.8 that the reciprocal of T (z) is also an analytic
function in the disk. Let

(2.96)

U(x) :=
1

T (X)
=
∞∏
k=0

1

1 +X2k +X2k+1 :=
∞∑
n=0

u(n)Xn

=
∞∏
k=0

1− x2k

1− x3·2k
=
∞∏
k=0

(1−X2k +X3·2k −X4·2k + . . . )

= 1− x− x2 + 2x3 − 2x4 + 4x6 − 4x7 − 2x8 + 6x9 − 4x10 − 2x11 + · · · .
A few brief facts about the mysterious (un). It is easy to show that the generating

function for U over Z/2Z is 1−X3

1−X = 1 + X + X2, so u(n) is odd for n ≤ 2 and even
for n ≥ 3. (No other congruence properties seem to be easy.) We also have

(2.97)

(1 +X +X2)U(X) = U(X2) =
∞∑
n=0

u(n)X2n,

=⇒ u(2k) + u(2k − 1) + u(2k − 2) = u(k)

and u(2k + 1) + u(2k) + u(2k − 1) = 0

=⇒ u(2n)− u(2n− 3) = u(n); u(2n+ 1)− u(2n− 2) = −u(n)

Numerical data strongly suggest that u(n) > 0 iff 3 | n, and that u(3n) ≥ |u(3n+1)| ≥
|u(3n+ 2)|. It would be interesting to find a combinatorial interpretation for u(n).
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3. Linear recurrences

3.1. Basics. In this section, we talk about constant-coefficient linear recurrences;
all objects should be viewed as living in C. Recurrences usually arise in one of two
forms. The first is the direct one: suppose that (a(n)) is a sequence which satisfies
the homogeneous d-th order linear recurrence:

(3.1) a(n) +
d∑
j=1

cja(n− j) = 0, n ≥ d,

or, equivalently,

(3.2) a(n+ d) = −
d∑
j=1

cja(n+ d− j) = 0, n ≥ 0.

We say that the undetermined values of a(i), 0 ≤ i ≤ d−1, are the initial conditions.
Associated to the recurrence (3.1) is the characteristic polynomial

(3.3) φ(z) = zd +
d∑
j=1

cjz
d−j.

If φ(t0) = 0, then a(n) = tn0 is easily seen to satisfy (3.1). We also make the fairly
obvious point that if (3.1) holds for (a(n)), then so does

(3.4) a(n+ k) +
d∑
j=1

cja(n+ k − j) = 0, n ≥ d,

for k ≥ 1, and by adding together identities such as (3.4), it is not hard to prove
that, if ζ(z) = φ(z)η(z), then (a(n)) also satisfies the recurrence whose characteristic
polynomial is ζ.

1
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The second way recurrences arise is as a matrix system: d sequences (aj(n)), 1 ≤
j ≤ d, which are related by:

(3.5)

aj(n+ 1) =
d∑

k=1

mjkak(n), n ≥ 0, 1 ≤ j ≤ d,a1(n+ 1)
. . .

ad(n+ 1)

 =

m11 · · · m1d

· · · · · · · · ·
md1 · · · mdd

a1(n)
. . .
ad(n)

 .

More formally, let A(n) = (a1(n) · · · ad(n))T be the column vector of sequences and
let M = [mjk] be the matrix of coefficients. Then (3.5) becomes

(3.6) A(n+ 1) = MA(n) =⇒ A(n) = MnA(0), n ≥ 0.

Here, A(0) provides the initial condition.
Although the methods of solutions for these two kinds of recurrences are different,

they can each be transformed to the other. The Cayley-Hamilton Theorem states
that if φ(λ) = det(λId −M) is the characteristic polynomial of M , then φ(M) = 0,
where “0” is construed as the d× d matrix of 0’s. Supposing φ is given by (3.3) for
convenience, we then have

(3.7)

φ(t) = td + c1t
d−1 + · · ·+ cd =⇒ Md + c1M

d−1 + · · ·+ cdId = 0

=⇒ Mn+d + c1M
n+d−1 + · · ·+ cdM

n = 0

=⇒ A(n+ d) + c1A(n+ d− 1) + · · ·+ cdA(d) = 0,

where the final “0” is the zero column vector. The last equation in (3.7) is simply
the assertion that each aj(n) satisfies (3.1).

On the other hand, (3.2) can be simple-mindedly rewritten as:

(3.8)


a(n+ 1)
a(n+ 2)
. . .

a(n+ d− 1)
a(n+ d)

 =


0 1 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 1
−cd −cd−1 · · · −c2 −c1




a(n)
a(n+ 1)
. . .

a(n+ d− 2)
a(n+ d− 1)

 .

The matrix in (3.8) (or its transpose) is sometimes called the companion matrix to
the polynomial φ, and has characteristic polynomial (−1)dφ.

3.2. Solving recurrences. For completeness’ sake, we include a self-contained proof
of the method of Partial Fractions, which requires the Fundamental Theorem of
Algebra to factor the denominator, but no explicit theory of complex variables.

Suppose

(3.9) F (z) =
p(z)

q(z)
=

bnz
n + bn−1z

n−1 + · · ·+ b0

cmzm + cm−1zm−1 + · · ·+ c0
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is a rational function, where bk, ck ∈ C, bncm 6= 0 and m > n. Assume that F is
presented in lowest terms and cm = 1. Suppose further that

(3.10) q(z) =
r∏
j=1

(z − zj)mj ,

where zj ∈ C, the zj’s are distinct, mj ∈ N with
∑
mj = m, and p(zj) 6= 0. Then as

we tell our calculus students:

Theorem 3.1. Suppose F is given by (3.9), and (3.10) holds. Then there exist
rj` ∈ C so that

(3.11) F (z) =
r∑
j=1

(
rj1

z − zj
+ · · ·+

rjmj

(z − zj)mj

)
.

Conversely, if F is given by (3.11), then F is a rational function of shape (3.9) for
which n < m, and (3.10) hold.

Proof. We induct on m = deg(q). If m = 1, then n = 0 and there is nothing
to prove. Suppose the theorem is valid for q with deg q ≤ m − 1 and suppose
q(z) = (z − z1)m1 q̄(z), with q̄(z1) 6= 0. We do not rule out the possibility that
q̄(z) ≡ 1. Consider the expression

F (z)− α

(z − z1)m1
=
p(z)− αq̄(z)

q(z)
.

Let pα(z) = p(z)−αq̄(z); if α0 = p(z1)
q̄(z1)

, then pα0(z1) = 0, hence pα0(z) = (z− z1)p̂(z).

It follows that

F (z) =
α0

(z − z1)m1
+

p̂(z)

(z − z1)m1−1q̄(z)
,

and a partial fraction expression for F (z)− α0

(z−z1)m1
exists by the inductive hypthesis.

For the converse, if F is given by (3.11), then multiplication by q(z) yields a
polynomial on the right-hand side, with degree at most m− 1. �

We now return to (3.1) and add a subtle new hypothesis:

(3.12) cd 6= 0.

(This retriction actually offers no practical limitations. Suppose (3.12) is not sat-
isfied. If cj = 0 for all j, then (3.1) has only the zero solution. Otherwise, suppose
ce 6= 0 and cj = 0 for e + 1 ≤ j ≤ d. Let ã(n) = a(n + d − e), n ≥ 0. Then (3.1)
becomes

ã(n) +
e∑
j=1

cj ã(n− j) = 0, n ≥ e,

with no constraint involving a(k) for 0 ≤ k < d− e. In this case, first solve for ã by
the algorithm described below, and then write a(n) = ã(n− (d− e)) for n ≥ d− e.)
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It is now convenient to define

ψ(z) = 1 +
d∑
j=1

cjz
j = zdφ(z−1),

as a polynomial with true degree d (by (3.12)) and note that zj 6= 0 in (3.10) and

φ(z) =
r∏
j=1

(z − zj)mj ⇐⇒ ψ(z) =
r∏
j=1

(1− zzj)mj .

Let M = max(1,
∑

j |cj|) ≥ 1. If |a(i)| ≤ T for i = 0, . . . , d− 1, then

|a(d)| ≤
d∑
j=1

|cj||a(d− j)| ≤ T

d∑
j=1

|cj| ≤ TM,

and so |a(i)| ≤ MT for i = 1, . . . , d. An easy induction implies that |a(n)| ≤
Mn+1−dT for each n ≥ d, and so the generating function for (a(n)) will be an analytic
function with radius of convergence ≥M−1. Let

f(z) :=
∞∑
n=0

a(n)zn.

Then, as we saw in (2.4),

(3.13) ψ(z)f(z) =
d−1∑
n=0

(
a(n) +

n∑
j=1

cja(n− j)

)
zn := p(z),

so f(z) is a rational function:

(3.14) f(z) =
p(z)

ψ(z)
=

p(z)∏r
j=1(1− zjz)mj

,

where deg(p) ≤ d− 1 < d.
It follows from Theorem 3.1 that there exist rj` ∈ C such that

(3.15)
∞∑
n=0

anz
n =

r∑
j=1

(
rj1

1− zjz
+ · · ·+

rjmj

(1− zjz)mj

)
.

The power series for the right-hand side was already computed in (2.18):

1

1− λz
=
∞∑
n=0

λnzn,
1

(1− λz)r+1
=
∞∑
n=0

(
n+ r

r

)
λnzn, r ≥ 1.

Thus, the coefficient of zn in the j-th summand in (3.15) can be expressed as follows:

(3.16)

(
rj1 +

mj∑
`=2

rj` ·
(n+ 1) · · · (n+ `− 1)

(`− 1)!

)
znj = pj(n)znj ,
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where pj is a polynomial with degree ≤ mj − 1. The coefficients of pj depend on
the r`’s, which depend on the initial conditions of the recurrence. We have therefore
proved the main theorem about linear recurrences.

Theorem 3.2. If (a(n)) is a sequence satisfying (3.1) with cd 6= 0, and if

(3.17) φ(z) = zd +
k∑
j=1

cjz
d−j =

r∏
j=1

(z − zj)mj ,

then there exist polynomials pj so that for n ≥ 0,

(3.18) a(n) =
r∑
j=1

pj(n)znj , deg(pj) ≤ mj − 1.

Conversely, any sequence (a(n)) defined by (3.18) satisfies the recurrence (3.1).

The proof of the last assertion is that (3.18) implies that f is given by (3.15), and
so ψf is a polynomial. In practice, “most” polynomials have distinct roots, so the
polynomials pj are, in fact, “usually” constants.

As noted in Chapter 2, the set of sequences satisfying a recurrence such as (3.1)
forms a d-dimensional vector space. One natural basis follows from (3.18), namely{

niznj : 1 ≤ j ≤ r, 0 ≤ i ≤ mj − 1
}
.

A somewhat more natural basis comes from (3.14) by considering those sequences

whose generating functions are given by zi

ψ(z)
for 0 ≤ i ≤ d − 1. Define b0(n) to be

the sequence satisfying (3.1) with initial conditions

b0(0) = · · · = b0(d− 2) = 0, b0(d− 1) = 1.

It follows from (3.13) that
∞∑
n=0

b0(n)zn =
zd−1

ψ(z)
.

Upon dividing (3.2) by zk, 1 ≤ k ≤ d− 1, we see that

∞∑
n=0

b0(n+ k)zn =
zd−1−k

ψ(z)
.

In other words, the sequences {(b0(n)), (b0(n+ 1)), . . . , (b0(n+ d− 1))} form a basis
for this subspace. This is familiar in the Fibonacci sequence setting.

There isn’t too much to say about solving (3.6) directly. The standard methodology
is to put the matrix in Jordan canonical form:

(3.19) M = C−1DC =⇒ Mn = C−1DnC.

If the characteristic polynomial of M has distinct roots, then D is diagonal and Dn

is easy to calculate; otherwise, D is a block diagonal matrix.
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3.3. Standard examples. Here is a simple example of a recurrence with a repeated
root. Let

(3.20) a(n) = 4a(n− 1)− 4a(n− 2); a(0) = r, a(1) = 2s; φ(z) = (z − 2)2.

Then a(2) = 4(2s− r), a(3) = 4(8s− 4r)− 4(2s) = 24s− 16r = 8(3s− 2r), and

(3.21)

(1− 4z + 4z2)
∞∑
n=0

a(n)zn = a(0) + (a(1)− 4a(0))z

+
∞∑
n=2

(a(n)− 4a(n− 1) + 4a(n− 2))zn = r + (2s− 4r)z.

Thus,

(3.22)

∞∑
n=0

a(n)zn =
r + (2s− 4r)z

(1− 2z)2
=

2r − s
1− 2z

+
−r + s

(1− 2z)2

=⇒ a(n) = ((2r − s) + (s− r)(n+ 1)) 2n = 2n(ns− (n− 1)r),

as can verified by the first few terms of the series given above.
Now the inevitable Fibonacci example. The Fibonacci numbers are defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, or Fn − Fn−1 − Fn−2 = 0 for n ≥ 2. Following the
previous procedure, we see that

∞∑
n=0

Fnz
n =

F0 + (F1 − F0)z

1− z − z2
=

z

1− z − z2
.

Since z2−z−1 = (z−φ)(z−φ̄), where φ = 1+
√

5
2
≈ 1.618 and φ̄ = 1−

√
5

2
≈ −.618, there

exist constants cj so that Fn = c1φ
n + c2φ̄

n. The initial conditions imply c1 + c2 = 0
and c1φ+ c2φ̄ = 1, yielding the Binet formula:

(3.23) Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

Since |φ̄| < 1, we see that Fn ≈ φn√
5
; in fact, Fn is the closest integer to φn√

5
for n ≥ 0.

It is also easy to extend the definition of the Fibonacci sequence to negative n; the
equation φφ̄ = −1 is instrumental in showing that F−n = (−1)n−1Fn.

It follows from the geometric series that

(3.24)

∞∑
n=0

Fnz
n =

z

1− z − z2
= z

∞∑
m=0

(z + z2)m =
∞∑
i=0

∞∑
j=0

(
i+ j

j

)
z · zi(z2)j

=⇒ Fn =
∑
j≥0

(
n− 1− j

j

)
.
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(The binomial coefficient shuts off the final sum at j = bn−1
2
c.) This formula lets you

find the Fibonacci numbers by summing along a slope of Pascal’s triangle, and will
show up in the next chapter.

Closely related are the Lucas numbers, defined by L0 = 2, L1 = 1, and Ln =
Ln−1 +Ln−2 for n ≥ 2. Since (Ln), (Fn) and (Fn+1) are three sequences with the same
second-order recurrence, they are linearly dependent. Thus, there exist constants ci
so that c1Ln + c2Fn + c3Fn+1 = 0, and (Fn) and (Fn+1) are not proportional, so we
may take c1 = 1. Putting n = 0, 1, we see that

2 + c3 = 1 + c2 + c3 = 0 =⇒ c2 = 1, c3 = −2

=⇒ Ln = 2Fn+1 − Fn = Fn−1 + Fn+1.

Similarly, (Fn), (Ln) and (Ln+1) are linearly dependent, and Fn = 1
5
(2Ln+1 − Ln).

The similarity of coefficients is not accidental; it’s an exercise that for fixed α, β,m,

Ln+m = αFn+1 + βFn ⇐⇒ Fn+m =
1

5
(αLn+1 + βLn) .

For a fixed positive integer m, there must be a dependence among (Fn), (Fn+1)
and (Fn+m). Taking n = 0, 1 in the equation Fn+m = αFn + βFn+1 implies that
Fm = β, Fm+1 = α + β, so it’s easy to derive the Fibonacci addition formula:

(3.25) Fn+m = (Fm+1 − Fm)Fn + FmFn+1 = Fm+1Fn + FmFn−1.

It is also easy to show that Ln = φn + φ̄n and FnLn = F2n. Finally, observe that

(3.26)

(x+ y)n + (x− y)n = 2
∑
k≥0

(
n

2k

)
xn−2ky2k;

(x+ y)n − (x− y)n = 2
∑
k≥0

(
n

2k + 1

)
xn−2k−1y2k+1.

Taking x = 1
2

and y =
√

5
2

, we find that x+ y = φ and x− y = φ̄, and in view of the
formulas for Fn and Ln, it follows from the binomial theorem that

(3.27) Ln =
1

2n−1

bn/2c∑
k=0

(
n

2k

)
5k, Fn =

1

2n−1

b(n−1)/2c∑
k=0

(
n

2k + 1

)
5k.

It does not seem to be intuitively obvious that the sums should be divisible by 2n−1,
nor that the ratio of the sums should approach

√
5 as n→∞. It takes nothing away

from the romance of Fibonacci numbers to observe that many of their properties are
similar to those satisfied by any sequence satisfying the second order linear recurrence;
a(n) = αa(n− 1) + βa(n− 2). This is especially true when β = ±1 (so the roots of
the characteristic equation are reciprocals or nearly so), and when a(0) = 0, a(1) = 1.
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3.4. Two basic Stern recurrences. In this section, we make a first pass at answer-
ing two basic questions about the Stern sequence: how many n have the property
that 3 | s(n), and what is the behavior of

∑
s(n)2?

Recalling (1.76) and (1.77), A(3, 0) denotes the set of n for which 3 | s(n), U(r; 3, 0)
is the number of elements of A(3, 0) in Ir and T (n; 3, 0) is the number of elements of
A(3, 0) which are ≤ n. We showed in Theorem 1.7 that 0 < n ∈ A(3, 0) if and only
if 2n, 8n± 5, 8n± 7 ∈ A(3, 0). We set ar = U(r; 3, 0) for short.

We can easily compute the first few values of ar := U(r; 3, 0); namely, a0 = a1 =
0, a2 = a3 = a4 = 2, a5 = 10, a6 = 18.

Theorem 3.3. If r ≥ 3, then

(3.28) ar = ar−1 + 4ar−3.

Proof. Since s(2r) = 1, no power of 2 is in A(3, 0). By (1.81), the number of n
in A(3, 0) in the five “covering congruences” of 0 (mod 2), 5 (mod 8), −5 (mod 8),
7 (mod 8), −7 (mod 8) is equal to ar−1, ar−3, ar−3, ar−3, ar−3 respectively. �

The characteristic equation of (3.28) is z3 − z2 − 4 = (z − 2)(z2 + z + 2) =
(z − 2)(z − µ)(z − µ̄), where

(3.29) µ =
−1 +

√
7i

2
≈ −.5 + 1.323i, µ̄ =

−1−
√

7i

2
≈ −.5− 1.323i.

It follows that ar = c12r + c2µ
r + c3µ̄

r, where

(3.30)

0 = c1 + c2 + c3

0 = 2c1 + µc2 + µ̄c3

2 = 4c1 + µ2c2 + µ̄2c3.

Since |µ| = |µ̄| =
√

2, the asymptotic growth of ar is determined by c1. Although
(3.30) is easy to solve, there is a trick to computing c1 directly. Observe that µ and
µ̄ are the roots of z2 + z + 2 = 0. Thus, if we multiply the rows above by 2, 1, and
1, successively and add, we find 2 = 8c1, so c1 = 1

4
. A routine computation, the rest

of which we omit, shows that

(3.31) ar =
1

4
· 2r +

(
−7 + 5

√
7i

56

)
µr +

(
−7− 5

√
7i

56

)
µ̄r.

It follows by a routine (but easy-to-get-wrong) computation using µµ̄ = 2 that:

(3.32)

T (2r; 3, 0) =
r−1∑
k=0

ak =
2r

4
+

(
i

4
√

7

)
· (µ̄µr − µµ̄r) +

1

2

=
2r

4
+

(
i

2
√

7

)
· (µr−1 − µ̄r−1) +

1

2
.
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As |µ| = |µ̄| =
√

2, it follows that |T (2r; 3, 0) − 2r

4
| = O(2r/2). In Theorem 3.12 we

prove the stronger estimate that T (n; 3, 0) = n
4

+O(n1/2).
Another way to look at these equations is to write

(3.33) (
√

2) · −1±
√

7i

2
√

2
=
√

2e±iα,
−7± 5

√
7i

56
=

1√
14
· e±iβ.

Then (3.31) becomes

(3.34) ar =
1

4
· 2r +

2r/2√
14
·
(
ei(rα+β) + e−i(rα+β)

)
=

1

4
· 2r + 2r/2

√
2/7 cos(rα + β).

Niven’s Theorem states that if θ
π

and cos(θ) are both rational, then 2 cos(θ) ∈ N. It

follows from (3.33) that cos(2α) = 3
4
, hence α

2π
is irrational. It follows that the values

of the sequence (cos(rα+ β)) are dense in [−1, 1]; the coefficient of the error term in

(3.34) thus gets arbitrarily close to
√

2/7 ≈ .5345.

We turn to the second question. We saw in (1.33) that
∑2r+1−1

n=2r s(n) = 3r. What

can one say about
∑2r+1−1

n=2r s(n)2? It is helpful to make a more general definition. For
integers u, v ≥ 0, let

(3.35) mu,v(r) :=
2r+1−1∑
n=2r

s(n)us(n+ 1)v.

A quick lemma uses the row-reflection property (1.19):

Lemma 3.4. For all u, v, r, mu,v(r) = mv,u(r).

Proof. A reparameterization via m+ n = 3 · 2r − 1 = 2r+1 + 2r − 1 shows that

mu,v(r) =
2r+1−1∑
n=2r

s(n)us(n+ 1)v =
2r∑

m=2r+1−1

s(3 · 2r −m− 1)us(3 · 2r −m)v

=
2r+1−1∑
m=2r

s((m+ 1)∗)us(m∗)v =
2r+1−1∑
m=2r

s((m+ 1))us(m)v = mv,u(r).

�

Lemma 3.5. The following family of recurrences hold for r ≥ 0:

(3.36) mu,v(r + 1) =
v∑
k=0

(
v

k

)
mu+k,v−k(r) +

u∑
`=0

(
u

`

)
mu−`,v+`(r).

Proof. The general reindexing

(3.37)
2b−1∑
n=2a

f(n) =
b−1∑
n=a

f(2n) +
b−1∑
n=a

f(2n+ 1),
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applied to a = 2r, b = 2r+1, implies that

mu,v(r + 1) =
2r+1−1∑
n=2r

s(2n)us(2n+ 1)v +
2r+1−1∑
n=2r

s(2n+ 1)us(2n+ 2)v

=
2r+1−1∑
n=2r

s(n)u(s(n) + s(n+ 1))v +
2r+1−1∑
n=2r

(s(n) + s(n+ 1))us(n+ 1)v

Expansion by the binomial theorem leads to (3.36). �

Theorem 3.6. For each integer p, the sequences (mi,p−i(r)), 0 ≤ i ≤ p, satisfy the
same linear recurrence of order bp

2
c+ 1.

Proof. There are p + 1 sequences (mi,p−i(r)), and (3.36) shows that they satisfy a
matrix linear recurrence. But Lemma 3.4 shows that we can rewrite (3.36) so as to
limit our attention to the bp

2
c+ 1 sequences (mi,p−i(r)) with i ≥ p/2. �

In particular, Lemmas 3.4 and 3.5 imply that m2,0(r) = m0,2(r) and

(3.38)

m2,0(r + 1) = m2,0(r) +m2,0(r) + 2m1,1(r) +m0,2(r),

m1,1(r + 1) = m2,0(r) +m1,1(r) +m1,1(r) +m0,2(r)

=⇒
(
m2,0(r + 1)
m1,1(r + 1)

)
=

(
3 2
2 2

)(
m2,0(r)
m1,1(r)

)
.

The characteristic polynomial of [ 3 2
2 2 ] is λ2 − 5λ+ 2, which has roots

(3.39) ν =
5 +
√

17

2
≈ 4.562, ν̄ =

5−
√

17

2
≈ .438.

The initial conditions are: m2,0(0) = s(1)2 = 1, m2,0(1) = s(2)2 + s(3)2 = 5. After
some computations, m2,0(r) simplifies to:

Theorem 3.7.

(3.40) m2,0(r) =
1√
17
· (νr+1 − ν̄r+1).

Since ν̄ ∈ (0, 1), it follows that m2,0(r) = bνr+1/
√

17c. The formula for m1,1(r) can
be found from the relation, m1,1(r + 1) = m2,0(r + 1)−m2,0(r). For later reference,
we observe that s(2r) = s(2r+1) = 1 implies that

(3.41) mu,0(r) = m0,u(r) =
∑∗

n∈Ir

s(n)u.

This is not true for mu,v(r) when uv > 0 because s(2r − 1) 6= s(2r+1 + 1).
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3.5. A summation technique. Recall the “trapezoidal sum” from (1.28):

b∑∗

n=a

f(n) =
b∑

n=a

f(n)− f(a) + f(b)

2
=

b−1∑
n=a

f(n) + f(n+ 1)

2
;

these expressions are additive; c.f. (1.29).
For 2rm ≤ n ≤ 2r(m+ 1), s(n) is easily expressible in terms of s(m) and s(m+ 1).

For this reason, we define the sequence S(f ;m) = (S(f ;m, r)) by

(3.42) S(f ;m, r) :=

2r(m+1)∑∗

n=2rm

f(n).

Lemma 3.8. Suppose that there is a finite set of sequences {(aj(r)) : 1 ≤ j ≤ e}
with the property that, for given f and each m ∈ N, S(f ;m, r) = ajm(r) for some
jm, 1 ≤ jm ≤ e. Then there exists d ≤ e and c`, 1 ≤ ` ≤ d, so that, for all m:

(3.43) S(f ;m, d) +
d∑
`=1

cjS(f ;m, d− `) = 0.

Proof. The e+ 1 e-tuples v(r) := (a1(r), . . . ae(r)), 0 ≤ r ≤ e, are linearly dependent,
so
∑e

r=0 λrv(r) = 0 for some non-zero λr. Let d be the largest r so that λr 6= 0 and
then let cj = λd−j/λd for 0 ≤ j ≤ d. �

When there is no ambiguity, for a sequence (a(r)), we define

(3.44) Y (a; r) := a(r) +
d∑
`=1

cja(r − `) = 0,

so that (3.43) is simply Y (S(f ;m); d) = 0.

Lemma 3.9. For all (f,m, r), we have

(3.45) S(f ;m, r + 1) = S(f ; 2m, r) + S(f ; 2m+ 1, r).

Proof. This is an application of (1.29); simply reinterpret

(3.46)

2r+1(m+1)∑∗

n=2r+1m

f(n) =

2r(2m+1)∑∗

n=2r(2m)

f(n) +

2r(2m+2)∑∗

n=2r(2m+1)

f(n).

�

Lemma 3.10. If Y (S(f,m); d) = 0 for all m, then for all r ≥ d,

(3.47) Y (S(f ;m); r) = 0.

Proof. We prove (3.47) by induction on r; the base case is (3.43). Assuming that
(3.47) holds, we find that

(3.48) Y (S(f ;m); r + 1) = Y (S(f ; 2m); r) + Y (S(f ; 2m+ 1); r)

by repeated application of Lemma 3.9, and this establishes the inductive step. �
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Theorem 3.11. Suppose Y (S(f,m); d) = 0 for all m and for t ∈ N, let

(3.49) At(r) =

2rt∑∗

n=0

f(n).

Then for r ≥ d, the sequence (At(r)) satisfies

(3.50) Y (At; r) = 0

Proof. Suppose t = 2r1 + 2r2 + · · · + 2rk , with r1 > r2 > · · · > rk, and let N0 = 0
and Nj = 2r1 + · · · + 2rj = Nj−1 + 2rj for j = 1, . . . , k, so that t = Nk. Further, for
1 ≤ j ≤ k, let Mj = 2−rjNj−1, so that Nj−1 = 2rjMj and Nj = 2rj(Mj + 1). Then

(3.51)

At(r) =

2rt∑∗

n=0

f(n) =
k∑
j=1

2rNj∑∗

n=2rNj−1

f(n)

=
k∑
j=1

2r+rj (Mj+1)∑∗

n=2r+rjMj

f(n)

 =
k∑
j=1

S(f ;Mj, r + rj).

is a sum of sequences, each of which satisfies (3.50) by Lemma 3.10. �

The hypotheses of Theorem 3.11 might seem to be formidably strong, and they
usually are, unless the function f being summed relates to the Stern sequence. For
example, suppose f(n) = s(n) itself, and write f(m) = a and s(m+ 1) = b. Then

(3.52)

S(f ;m, 0) :=
s(m)

2
+
s(m+ 1)

2
=
a+ b

2
,

S(f ;m, 1) :=
s(2m)

2
+ s(2m+ 1) +

s(2m+ 2)

2

=
a+ 2(a+ b) + b

2
=

3a+ 3b

2
.

That is, S(f ;m, 1) = 3S(f ;m, 0), and so, as we’ve already seen in Lemma 1.3,

(3.53)

2N∑∗

n=0

s(n) = 3

N∑∗

n=0

s(n).

We will now apply Theorem 3.11 to the two situations of §3.4.

3.6. The Stern sequence mod 3. Suppose f = χA(d,i), so for T ⊆ N, the expression∑
n∈T f(n) counts the number of n in T for which s(n) ≡ i (mod d). By (1.12),

s(2rm+ k) = s(2r − k)s(m) + s(k)s(m+ 1), 0 ≤ k ≤ 2r.

If (s(m1), s(m1 +1)) ≡ (s(m2), s(m2 +1)) (mod d), then it follows that s(2rm1 +k) ≡
s(2rm2 + k) (mod d) for 0 ≤ k ≤ 2r, so that

(3.54) S(χA(d,i);m1, r) = S(χA(d,i);m2, r).
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Since s(m) ≡ s(m+1) ≡ 0 (mod d) is impossible, this means there are at most d2−1
different sequences (S(χA(d,i);m, r)), parameterized by (i (mod d), j (mod d)). The
hypothesis of Lemma 3.8 is satisfied and so Theorem 3.11 applies.

We now apply this in detail to the case (d, i) = (3, 0), f = χ = χA3,0 and keep this
notation for the rest of this section; we return to the general case in a later chapter.

There are, conceivably eight different cases, depending on the congruence classes
mod 3; however, two observations reduce the number of different sequences: first,
if (s(m′), s(m′ + 1)) ≡ (s(m + 1), s(m)) (mod 3), then S(χ;m, r) = S(χ;m′, r) by
mirror symmetry; second, if (s(m′), s(m′ + 1)) ≡ −(s(m), s(m + 1)) (mod 3), then
s(2rm′ + k) ≡ −s(2rm + k) (mod 3), so χ(2rm′ + k) = χ(2rm + k) and again,
S(χ;m, r) = S(χ;m′, r).

Let Sij(r) = S(χ;m, r) in the case that (s(m), s(m + 1)) ≡ (i, j) (mod 3). Thus,
S01(r) = S02(r) = S10(r) = S20(r), S11(r) = S22(r) and S12(r) = S21(r), so there are
only three different sequences. A look at the initial conditions

(3.55)

S01(r) :

0 1
0 1 1
0 1 1 2 1
0 1 1 2 1 3 2 3 1

S11(r) :

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1

S12(r) :

1 2
1 3 2
1 4 3 5 2
1 5 4 7 3 8 5 7 2

shows that

(3.56)

(S01(0), S11(0), S12(0)) = (1
2
, 0, 0),

(S01(1), S11(1), S12(1)) = (1
2
, 0, 1),

(S01(2), S11(2), S12(2)) = (1
2
, 2, 1),

(S01(3), S11(3), S12(3)) = (5
2
, 2, 1).

It follows, unsurprisingly in view of Theorem 3.3, that

(3.57) Sij(3) = Sij(1) + 4Sij(0).

This derivation of the recurrence uses no combinatorial information; instead, its ex-
istence is forced by dimensional considerations. An alternative approach to this
method would apply Lemma 3.9 to observe that Sij(r + 1) = Sik(r) + Skj(r), where
i + j ≡ k (mod 3). (This matrix recurrence is the technique we will use for general
bases in a later chapter.)
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In the notation of §3.4, we have S11(r) = ar, S12(r) = 1
2
ar+1 and S01(r) =

T (2r; 3, 0) = 1
4
ar+2, and further

(3.58)

∣∣S11(r)− 1
4
· 2r
∣∣ ≤√2

7
· (
√

2)r,∣∣S12(r)− 1
4
· 2r
∣∣ ≤√1

7
· (
√

2)r,∣∣S01(r)− 1
4
· 2r
∣∣ ≤√ 1

14
· (
√

2)r.

Thus, it follows that for all (m, r),

(3.59)

∣∣∣∣S(χ;m, r)− 1

4
· 2r
∣∣∣∣ ≤√2

7
· (
√

2)r.

Theorem 3.12.

(3.60)

∣∣∣∣T (N ; 3, 0)− N

4

∣∣∣∣ = O(N1/2).

Proof. First observe that

T (N ; 3, 0) =

2N∑∗

n=0

χ(n) +
χ(0) + χ(N)

2
,

so the difference between the two is either 1
2

or 1, depending on whether N ∈ A(3, 0).
This will not affect the asymptotics. Next, suppose that N = 2r1 + · · ·+ 2rk . Then

(3.61)

N∑∗

n=0

χ(n) =
k∑
j=1

S(χ;Mj, rj).

Therefore,

(3.62)

∣∣∣∣T (3, 0;N)− N

4

∣∣∣∣ ≤ 1 +

∣∣∣∣∣
N∑∗

n=0

χ(n)− N

4

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣
k∑
j=1

S(χ;Mj, rj)−
1

4

k∑
j=1

2rj

∣∣∣∣∣ ≤ 1 +
k∑
j=1

∣∣∣∣S(χ;Mj, rj)−
1

4
· 2rj

∣∣∣∣
≤ 1 +

k∑
j=1

√
2
7
· (
√

2)rj ≤ 1 +
√

2
7

(
r1∑
`=0

(
√

2)`

)
= 1 +

√
2
7
· (
√

2)r1+1 − 1√
2− 1

< 1 +
√

2
7
(
√

2 + 1)(
√

2)(N1/2 − 1) =
2
√

2 + 2√
7
·N1/2 < 2N1/2.

�
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3.7. How fast does the Stern sequence grow? We return briefly to Theorem
3.7. Using the general methods, we can obtain the recurrence more easily. Writing
s(m) = a and s(m+ 1) = b, with f(n) = s(n)2, we have

(3.63)

S(f ;m, 0) =
f(m)

2
+
f(m+ 1)

2
=
a2 + b2

2
,

S(f ;m, 1) =
f(2m)

2
+ f(2m+ 1) +

f(2m+ 2)

2

=
a2 + 2(a+ b)2 + b2

2
=

3a2 + 4ab+ 3b2

2
,

S(f ;m, 2) =
f(4m)

2
+ f(4m+ 1) + f(4m+ 2) + f(4m+ 3) +

f(4m+ 4)

2

=
3a2 + 4ab+ 3b2

2
+ (2a+ b)2 + (a+ 2b)2 =

13a2 + 20ab+ 13b2

2
.

It may be readily verified that

(3.64) S(f ;m, 2)− 5S(f ;m, 1) + 2S(f,m, 0) = 0.

Since S(f ; 1, r) = m2,0(r), this is a much faster derivation of Theorem 3.7; however,
you don’t get the recurrence for g(N), which is not a sum of this kind.

We now discuss, without tremendous detail,

(3.65) mk,0(r) :=

2r+1∑∗

n=2r

s(n)k = S(s(n)k; 1, r).

As above, we suppose that s(m) = a and s(m+ 1) = b, so that

(3.66)

S(f ;m, 0) =
1

2

(
ak + bk

)
;

S(f ;m, 1) = S(f ;m, 0) + (a+ b)k;

S(f ;m, 2) = S(f ;m, 1) + (2a+ b)k + (a+ 2b)k.

As we have already seen, when k = 1, S(f ;m, 1) = 3S(f ;m, 0) and m1,0(r) = 3r.
When k = 3, there is an unusually pleasant recurrence:

S(f ;m, 2)− 7S(f ;m, 1) = (2a+ b)3 + (a+ 2b)3 − 6(a+ b)3 − 3(a3 + b3) = 0.

It follows that m3,0(r + 2) = 7m3,0(r + 1) for r ≥ 0, and that

(3.67) m3,0(0) = 1, m3,0(r) = 9 · 7r−1, r ≥ 1.

Note that this second-order recurrence has one root equal to zero and another way to
express (3.67) would be as m3,0(r) = 9

7
· 7r − 2

7
· 0r. Alternatively, Lemma 3.5 implies
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that m3,0(r) = m0,3(r), m2,1(r) = m1,2(r) and

(3.68)

m3,0(r + 1) = 2m3,0(r) + 3m2,1(r) + 3m1,2(r) +m0,3(r)

m2,1(r + 1) = m3,0(r) + 2m2,1(r) + 2m1,2(r) +m0,3(r)

=⇒
(
m3,0(r + 1)
m2,1(r + 1)

)
=

(
3 6
2 4

)(
m3,0(r)
m2,1(r)

)
.

The characteristic polynomial of 3 6
2 4 is λ2 − 7λ. The cases for k = 4, 5 are deferred

to the solutions to the second set of exercises.
Is there a point to this? We might ask the vague question: how large is s(n)?

Certainly individual values vary quite a bit: if 2r ≤ n ≤ 2r+1, 1 ≤ s(n) ≤ Fr+2, as
we have seen. However, the results on sums of powers suggest that there might be
some regular behavior. Define the t-th power mean for 2r ≤ n ≤ 2r+1:

(3.69) M(r; t) :=

 1

2r

2r+1∑∗

n=2r

s(n)t

1/t

.

We have already seen that M(r, 1) =
(

3
2

)r
, which suggests the definition

(3.70) L(r; t) := M(r, 1)1/r.

In this notation, L(r; 1) = 3
2
. This subject ties in with some traditional analysis, and

a classical slick inequality proof.

Theorem 3.13. If xk > 0 for 1 ≤ k ≤ n, then the function

(3.71) M(t) :=

(
1

n

n∑
k=1

xtk

)1/t

is increasing for t ≥ 0, and lim
t→∞

M(t) = max xk.

Proof. We first consider the auxiliary function

(3.72) Φ(t) := log

(
n∑
k=1

xtk

)
,

and commit calculus, finding by routine computation that

(3.73) Φ′′(t) =

(
n∑
k=1

xtk

)(
n∑
k=1

xtk(log xk)
2

)
−
(

n∑
k=1

xtk log xk

)2

(
n∑
k=1

xtk

)2 .

The numerator of (3.73) is non-negative by Cauchy-Schwartz, so Φ is convex for all
t. This implies that

Ψ(t) :=
Φ(t)− Φ(0)

t
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is an increasing function for t ≥ 0, as is eΨ(t). But

(3.74)
Ψ(t) =

log (
∑n

k=1 x
t
k)− log (

∑n
k=1 x

0
k)

t
=

1

t
log

(
1

n

n∑
k=1

xtk

)
=⇒ eΨ(t) = M(t).

If M = maxxk, then M t ≤
n∑
k=1

xtk ≤ nM t, so n−1/tM ≤M(t) ≤M . �

For example,

lim
t→∞

L(r, t) = F
1/r
r+2.

Lemma 3.14. Suppose

(3.75) ar = cλr +
t∑

j=1

gj(r)λ
r
j ,

where c > 0, gj(r) is a polynomial in r and λ > |λj| is a positive real. Then

(3.76) lim
r→∞

a1/r
r = λ.

Proof. Since ar = λrbr, where lim br = c > 0, and since c1/r → 1, the proof is
immediate. �

It follows from Lemma 3.14 that

(3.77) lim
r→∞

(
lim
t→∞

L(r, t)
)

= lim
r→∞

F
1/r
r+2 = Φ =

1 +
√

5

2
≈ 1.6180.

A more interesting, and open, question, is the computation of

(3.78) lim
t→∞

(
lim
r→∞

L(r, t)
)
.

which, based on the lemma, is closely related to the behavior of the recurrences
that we’ve found. In fact, taking into account earlier equations and the numerical
values of the roots not presented here explicitly (for t = 4, 5, 6, 7, and providing an
uninteresting hint to the exercises), we have

(3.79)

lim
r→∞

L(r, 1) = 3
2

= 1.5, lim
r→∞

L(r, 2) =
(

5+
√

17
4

)1/2

≈ 1.5102,

lim
r→∞

L(r, 3) =
(

7
2

)1/3 ≈ 1.5183, lim
r→∞

L(r, 4) ≈ 1.5249,

lim
r→∞

L(r, 5) ≈ 1.5305, lim
r→∞

L(r, 6) ≈ 1.5354, lim
r→∞

L(r, 7) ≈ 1.5396.

The limiting behavior is far from clear.
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3.8. Sylvester’s Theorem. The material in this section is mostly adapted from
the papers On the length of binary forms, to appear in Quadratic and Higher Degree
Forms, (K. Alladi, M. Bhargava, D. Savitt, P. Tiep, eds.), Developments in Math.
Springer, New York, http://arxiv.org/pdf/1007.5485.pdf. and Sums of even powers
of real linear forms, Mem. Amer. Math. Soc., Volume 96, Number 463, March, 1992
(MR 93h.11043), both of which can be downloaded from my website.

We give an application of linear recurrences with no direct ties to Stern sequences,
but which resonates with various number theoretic questions: namely, the represen-
tation of binary forms as a sum of powers of linear forms. The main result was proved
by J. J. Sylvester in 1851.

The representation of quadratic forms as a sum of squares of linear forms is well
understood and a standard part of linear algebra. This is less so for higher powers of
linear forms, even though the simplest case (two variables) has been understood for
more than 150 years.

Consider also the classical question of quadrature. Suppose S ⊆ Rn and measure
µ are given. A quadrature formula of strength m for (S, dµ) is an exact formula

(3.80)

∫
S

f dµ =
r∑

k=1

λkf(tk), f ∈ R[x1, . . . , xn], deg f ≤ m.

In this section we take the case of S = [−1, 1] ⊆ R1 and Lebesgue measure: (3.80) is
a quadrature formula of strength m provided it holds for f(t) = ti, 0 ≤ i ≤ m, so

(3.81)
1− (−1)m+1

m+ 1
=

∫ 1

−1

ti dt =
r∑

k=1

λkt
i
k, 0 ≤ i ≤ m.

If r < m, then (3.81) says that the successive “moments” must satisfy an r-th order
linear recurrence. We can turn (3.81) into a single equation by constructing the
appropriate generating function:

(3.82)

∫ 1

−1

(x+ ty)m dt =
m∑
i=0

(
m

i

)(∫ 1

−1

ti dt

)
xm−iyi

=
m∑
i=0

(
m

i

)( r∑
k=1

λkt
i
k

)
xm−iyi =

r∑
k=1

λk(x+ tky)m.

In other words, a quadrature formula on an interval in R is the same as a represen-
tation of a binary forms of degree m as a sum of m-th powers of linear forms.

We consider binary m-ic forms with complex coefficients; that is, homogeneous
polynomials of degree m in two variables, written as:

(3.83) f(x, y) =
m∑
i=0

(
m

i

)
aix

m−iyi.

(It is both customary and convenient to factor the binomial coefficient out in the
expression.) The length or rank of f is the smallest integer r with the property that
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there exists an expression:

(3.84) f(x, y) =
r∑

k=1

γk(αkx+ βky)m.

One quick remark: if r in (3.84) is minimal, then the linear forms {αkx+βky} will be
pairwise non-proportional; otherwise, two could be combined. Under this restriction,
we say that (3.84) is an honest representation.

If (3.84) is honest, then αk = 0 for at most one zero; hence after writing ck = γkα
m
k

and λk = βk/αk,

(3.85) f(x, y) =
r∑

k=1

ck(x+ λky)m, or f(x, y) =
r−1∑
k=1

ck(x+ λky)m + cry
m.

A comparison with (3.83) shows that (3.85) is equivalent to:

(3.86)

ai =
r∑

k=1

ckλ
i
k, 0 ≤ i ≤ m or

ai =
r−1∑
k=1

ckλ
i
k (0 ≤ i ≤ m− 1), am =

r−1∑
k=1

ckλ
m
k + cr

Theorem 3.15 (Sylvester). Suppose f is given by (3.83) and suppose

(3.87) h(x, y) =
r∑
t=0

ctx
r−tyt =

r∏
j=1

(−βjx+ αjy)

is a given product of pairwise distinct linear factors. Then there exist λk ∈ C so that
(3.84) holds if and only if

(3.88)


a0 a1 · · · ar
a1 a2 · · · ar+1
...

...
. . .

...
am−r am−r+1 · · · am

 ·

c0

c1
...
cr

 =


0
0
...
0

 ;

that is, if and only if

(3.89)
r∑
t=0

a`+tct = 0, ` = 0, 1, . . . ,m− r.

If (3.88) holds, we say that h, as defined by (3.87) is a Sylvester form for p.
Sylvester’s Theorem in practice involes writing the successive “Hankel” matrices in
(3.88) with increasing r until there exists one with a non-zero null vector (c0, . . . , cr)

t

so that the resulting Sylvester form has distinct factors. Afterwards, the computation
of the λk is routine.



20 BRUCE REZNICK, UIUC

Proof. First suppose that (3.84) holds. Then for 0 ≤ i ≤ m,

ai =
r∑

k=1

λkα
m−i
k βik =⇒

r∑
t=0

a`+tct =
r∑

k=1

r∑
t=0

λkα
m−`−t
k β`+tk ct

=
r∑

k=1

λkα
m−`−r
k β`k

r∑
t=0

αr−tk βtkct =
r∑

k=1

λkα
m−`−r
k β`k h(αk, βk) = 0.

Now suppose that (3.85) holds and suppose first that cr 6= 0. We may assume
without loss of generality that cr = 1 and that αj = 1 in (3.87), so that the βj’s are
distinct. Define the infinite sequence (ãi), i ≥ 0, by:

(3.90) ãi = ai if 0 ≤ i ≤ r − 1; ãr+` = −
r−1∑
t=0

ãt+`ct for ` ≥ 0;

so that (ãi) satisfies (3.86) and extends the finite sequence (a0, . . . , am):

(3.91) ãi = ai for i ≤ m.

Theorem 3.2 now implies that there exist λk so that for all i,

(3.92) ãi =
r∑

k=1

λkβ
i
k.

In particular,

(3.93)

f(x, y) =
m∑
i=0

(
m

i

)
ajx

m−iyi =

r∑
k=1

λk

m∑
i=0

(
m

i

)
βikx

m−iyi =
r∑

k=1

λk(x+ βky)m,

as claimed in (3.84).
If cr = 0, then cr−1 6= 0, because h has distinct factors. We may proceed as before,

replacing r by r − 1 and taking cr−1 = 1, so that (3.87) becomes

(3.94) h(x, y) =
r−1∑
t=0

ctx
r−tyt = x

r−1∏
j=1

(y − βjx).

Since cr = 0, the system (3.88) can be rewritten as
a0 a1 · · · ar−1

a1 a2 · · · ar
...

...
. . .

...
ad−r am−r+1 · · · am−1

 ·


c0

c1
...

cr−1

 =


0
0
...
0

 .

We may now argue as before, except that (3.91) becomes

(3.95) ãi = ai for i ≤ m− 1, am = ãm + λm
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for some λm, and (3.93) becomes

(3.96)

f(x, y) =
m∑
i=0

(
m

i

)
ajx

m−iyi =

λry
m +

r−1∑
k=1

λk

m∑
i=0

(
m

i

)
βikx

m−iyi = λry
m +

r−1∑
k=1

λk(x+ βky)m,

By (3.94), (3.96) meets the description of (3.84), completing the proof. �

In 1886, Gundelfinger studied the case where the Sylvester form h has repeated
factors. The factor (−βx+αy)` of h corresponds to a summand q(x, y)(αx+βy)d+1−`

in f , where q is an arbitrary form of degree `− 1.
The classical application of Sylvester’s Theorem is to “canonical forms”. If m =

2s− 1 and r = s, then the matrix in (3.88) has dimensions s× (s + 1) and so has a
non-trivial null-vector; for a “general” f , the resulting form h has distinct factors, and
so a general binary form of degree 2s− 1 has a representation as a sum of s 2s− 1-st
powers of linear forms, which is unique up to a permutation of the summands. If
d = 2s and r = s, then the matrix in (3.88) is square, and since its determinant is
not 0 in general, there is no corresponding h. However, for general f , for any α, there
there exists λ0 = λ0(α) so that the Hankel matrix for f − λ0(x + αy)2s does have a
non-trivial null vector and is a sum of s 2s-th powers, hence general f is a sum of
s+ 1 2s-th powers in infinitely many ways.

Without going into details, one can also define the K-length of a form f for any
subfield K ⊆ C which contains the coefficients of f , and Sylvester’s Theorem can be
adapted to that case as well. Here is one example:

H(x, y) = 3x5 − 20x3y2 + 10xy4 =

(
5

0

)
· 3 x5 +

(
5

1

)
· 0 x4y

+

(
5

2

)
· (−2) x3y2 +

(
5

3

)
· 0 x2y3 +

(
5

4

)
· 2 xy4 +

(
5

5

)
· 0 y5;

 3 0 −2 0
0 −2 0 2
−2 0 2 0

 ·

c0

c1

c2

c3

 =

0
0
0

 ⇐⇒ (c0, c1, c2, c3) = r(0, 1, 0, 1).

Thus, H has a unique Sylvester form of degree 3: h(x, y) = y(x2 + y2), which factors
as y(y − ix)(y + ix). Accordingly, there exist λk ∈ C so that

H(x, y) = λ1x
5 + λ2(x+ iy)5 + λ3(x− iy)5.

It may be checked that λ1 = λ2 = λ3 = 1; this is how H was constructed.
To find representations for H of length 4, we consider (3.85) for H with r = 4:

H4(H) · (c0, c1, c2, c3, c4)t = (0, 0)t ⇐⇒ 3c0 − 2c2 + 2c4 = −2c1 + 2c3 = 0

⇐⇒ (c0, c1, c2, c3, c4) = r1(2, 0, 3, 0, 0) + r2(0, 1, 0, 1, 0) + r3(0, 0, 1, 0, 1),
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hence h(x, y) = r1x
2(2x2 + 3y2) + y(x2 + y2)(r2x + r3y). Given a field K, it is

unclear whether there exist {r`} so that h splits into distinct factors over K. We
have found such {r`} for small imaginary quadratic fields. For example, the choice
(r1, r2, r3) = (1, 0, 2) gives h(x, y) = (2x2 + y2)(x2 + 2y2) and

24H(x, y) = 4(x+
√
−2y)5 + 4(x−

√
−2y)5 + (2x+

√
−2y)5 + (2x−

√
−2y)5.

Similarly, (r1, r2, r3) = (2, 0, 9) and (2, 0,−5) give h(x, y) = (x2 + 3y2)(4x2 + 3y2)
and (x2 − y2)(4x2 + 5y2), leading to representations for H of length 4 over Q(

√
−3)

and Q(
√
−5). The simplest such representation we have found for Q(

√
−6) uses

(r1, r2, r3) = (8450, 0,−104544) and

h(x, y) = (5x+ 12y)(5x− 12y)(6 · 132x2 + 332y2).

We believe, but have not proved, that examples such as these exist for every imaginary
quadratic field. A different theorem of Sylvester, from 1864, implies that H has no
representation as a sum of fewer than five real fifth powers of linear forms.

As another example with number theory applications, consider the representations
of (xy)k as a sum of 2k-th powers of linear forms. The square Hankel matrix for
f(x, y) =

(
2k
k

)
xkyk has 1’s on the NE-SW diagonal, and so is non-singular. Thus

there is no representation of f as a sum of k 2k-th powers of linear forms.
Let ζm = e2πi/m. It is easy to see that

∑m−1
j=0 ζrjm = 0 unless m | r, in which case

it equals m. It turns out that the full set of minimal representations of f(x, y) =(
2k
k

)
xkyk as a sum of (k + 1) 2k-th powers is

(3.97) (k + 1)

(
2k

k

)
xkyk =

k∑
j=0

(ζj2k+2wx+ ζ−j2k+2w
−1y)2k, 0 6= w ∈ C.

Evaluate the right-hand side of (3.97) by expanding the powers:

(3.98)

k∑
j=0

(ζj2k+2wx+ ζ−j2k+2w
−1y)2k =

k∑
j=0

2k∑
t=0

(
2k

t

)
ζ
j(2k−t)−jt
2k+2 w(2k−t)−tx2k−tyt

=
2k∑
t=0

(
2k

t

)
w2k−2tx2k−tyt

(
k∑
j=0

ζ
j(k−t)
k+1

)
.

Since the only multiple of k + 1 in the set {k − t : 0 ≤ t ≤ 2k} occurs for t = k,
(3.98) reduces to the left-hand side of (3.97). The representations in (3.97) arise
because the null-vectors of the resulting (k− 1)× (k+ 1) Hankel matrix can only be
(c0, 0, . . . , 0, ck+1)t and c0x

k+1 + ck+1y
k+1 is a Sylvester form when c0ck+1 6= 0. We

state without proof that by making the change of variables in (x, y) 7→ (x− iy, x+ iy)
in (3.98) we obtain the expressions:

(3.99)

(
2k

k

)
(x2 + y2)k =

1

k + 1

k∑
j=0

(
cos( jπ

k+1
+ θ)x+ sin( jπ

k+1
+ θ)y

)2k
, θ ∈ C.
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When θ is real, these are related to the “Hilbert identities” used in solving the Waring
problem. Even for real θ, the earliest instance of (3.99) in the literature seems to be
by Friedman from 1957. Representations of (x2

1 + · · · + x2
n)k as a real sum of 2k-th

powers and can be identified with quadrature formulas of strength 2k + 1 on the
Sn−1 ⊆ Rn. In this sense, (3.99) can be traced back to work of Mehler from 1864.

We finish by revisiting quadrature formulas on [−1, 1]. For strength 3, (3.82)
becomes:

2x3 + 3 · 2
3
xy2 =

r∑
k=1

λk(x+ tky)3.

Sylvester’s Theorem with r = 2 yields(
2 0 2/3
0 2/3 0

)
·

c0

c1

c2

 =

(
0
0

)
⇐⇒ (c0, c1, c2) = r(1, 0,−3).

Thus, h(x, y) = x2 − 3y2 and there exist λk so that 2x3 + 3 · 2
3
xy2 = λ1(

√
3x+ y)3 +

λ2(
√

3x− y)3. Cleaning up, we find the Gaussian quadrature formula of strength 3:

2x3 + 2xy2 = (x+ γy)3 + (x− γy)3 ⇐⇒
∫ 1

−1

f(t) dt = f(γ) + f(−γ); γ =
√

1
3
.

For strength 4, the matrix  2 0 2/3
0 2/3 0

2/3 0 2/5


is non-singular, so there are no 2-point quadrature formulas of strength 3. But

(
2 0 2/3 0
0 2/3 0 2/5

)
·


c0

c1

c2

c3

 =

(
0
0

)

leads to h(x, y) = rx(3x2 − 2y2) + sy(5x2 − 3y2). Thus, there are actually infinitely
many 3-point quadrature formulas of strength 4, and we can choose (r, s) to ensure
that any particular point is included. In this way, we see that there is no guarantee
that the points {tk} need to be in the interval of integration, although practical people
also want to choose points to minimize error. There will be an exercise or two on
this, as well as one showing that there is exactly one choice of (r, s) for a strength 4
quadrature formula which actually has strength 5.
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1. Simple continued fractions

In this set of notes, we talk about simple continued fractions (numerators = 1, scf

for short) and their relationship to the Stern sequence. There is a close relationship
between simple continued fractions and the Euclidean algorithm. As a representative
example,

(1) 2 +
1

3 +
1

7

= 2 +
1
22
7

= 2 +
7

22
=

51

22
,

51 = 2 × 22 + 7
22 = 3 × 7 + 1
7 = 7 × 1 + 0

.

Somewhat more formally, if z = p

q
, p, q ∈ N, gcd(p, q) = 1, then either q = 1 and

z = p, or p = a0q + r, with 1 ≤ r ≤ q − 1, and

(2) z =
p

q
=

a0q + r

q
= a0 +

r

q
= a0 +

1

q

r

.

Since r < q, this sets up a finite recursive definition for scf, resulting in

(3) z = x1 +
1

x2 +
1

· · · + 1

xn

,

with xn ≥ 2. Alternatively,

(4) z = x1 +
1

x2 +
1

· · · + 1

xn − 1 +
1

1

,

and we see that z always has a representation with an odd number of denominators.
1
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It is helpful to think of the denominators as indeterminates in finding formulas.
For n ≥ 1, define pn(x1, . . . , xn) and qn(x1, . . . , xn) by:

(5)
pn(x1, . . . , xn)

qn(x1, . . . , xn)
= x1 +

1

x2 +
1

· · · + 1

xn

,

with the convention that p1(x1) = x1 and q1(x1) = 1. There is an immediate relation:

(6)
pn(x1, . . . , xn)

qn(x1, . . . , xn)
= x1+

1

pn−1(x2, . . . , xn)

qn−1(x2, . . . , xn)

=
x1pn−1(x2, . . . , xn) + qn−1(x2, . . . , xn)

pn−1(x2, . . . , xn)
.

It follows that qn(x1, . . . , xn) = pn−1(x2, . . . , xn), and so it is natural to define p0 = 1
and say goodbye to qn. For n ≥ 2,

(7) pn(x1, . . . , xn) = x1pn−1(x2, . . . , xn) + pn−2(x3, . . . , xn)

In order to make this recurrence sensible for n = 1, it is customary to define p−1 = 0.
The traditional name for pn is the continuant. Here are some of the smaller values.

(8)

p−1 = 0, p0 = 1, p1(x1) = x1, p2(x1, x2) = x1x2 + 1,

p3(x1, x2, x3) = x1x2x3 + x1 + x3,

p4(x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x1x4 + x3x4 + 1.

It is evident from the definition that pn(x1, . . . , xn) is linear in each of the variables,
and so it is natural to wonder which monomials xi1 · · ·xir appear. It turns out to be
the terms whose absent variables appear in disjoint consecutive pairs. We define

(9) Bi = Bi(xi, xi+1) =
1

xixi+1

.

and for integers m < n, define I(m, n) to be

(10) ∅ ∪ {i = (i1, . . . , ir) : m ≤ i1, ij + 2 ≤ ij+1 (1 ≤ j ≤ r − 1), ir ≤ n − 1}.
That is, I(m, n) consists of the first elements of all sets of disjoint pairs (ij, ij + 1)
contained in {m, . . . , n}.
Theorem 1. For all n ≥ 0,

(11) pn(x1, . . . , xn) = x1 . . . xn

∑

i∈I(1,n)

Bi1 · · ·Bir .

Proof. Let

(12) φn(x1, . . . , xn) :=
pn(x1, . . . , xn)

x1 · · · xn

.
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We see from (8) that φ0 = φ1 = 1 and φ2(x1, x2) = 1 + B1, so the theorem is valid
for n ≤ 2. After division by x1 · · ·xn, the basic recurrence (7) becomes

(13) φn(x1, . . . , xn) = φn−1(x2, . . . , xn) +
φn−2(x3, · · · , xn)

x1x2

.

We divide i ∈ I(1, n) into two classes. First, if 1 /∈ i, then i ∈ I(2, n) (possibly i = ∅.)
Otherwise, 1 ∈ i, so 2 /∈ i and i = (1, i′) (as a concatenation), where i′ ∈ I(3, n)
(possibly i′ = ∅.) It follows by induction that

(14)

φn(x1, . . . , xn)

=
∑

i∈I(2,n)

Bi1 · · ·Bir + B1 ·
∑

i∈I(3,n)

Bi1 · · ·Bir

=
∑

i∈I(1,n)

Bi1 · · ·Bir ,

as desired. ¤

The next observation is critical to understanding the Stern sequence.

Theorem 2. For all n,

(15) pn(x1, . . . , xn) = pn(xn, . . . , x1).

Proof. The condition on the missing indices in the terms of the continuant is sym-
metric under their mirror reflection. To be precise, if f : xi → xn+1−i, then xixi+1 →
xn+1−ixn−i, so Bi → Bn−i (for 1 ≤ i ≤ n − 1), and the condition of the separation of
indices by at least two is preserved. ¤

Corollary 3. For all n,

(16) pn(x1, . . . , xn) = xnpn−1(x1, . . . , xn−1) + pn−2(x1, . . . , xn−2).

We now present some “expansion” formulas for continuants.

Theorem 4. Using the conventions p0 = 1 and p−1 = 0, we have, for m, n ≥ 0

(17)
pm+n(x1, · · · , xm, y1, . . . , yn) = pm(x1, · · · , xm)pn(y1, · · · , yn)

+pm−1(x1, · · · , xm−1)pn−1(y2, · · · , yn).

Proof. Although this can be proved by looking at the “missing terms”, it is probably
clearest to prove by induction on n for fixed m. For k ≤ m, let pk = pk(x1, . . . , xk) for
short, and let the desired equation for n be expressed as LHS(n) = RHS(n). Then
LHS(0) = RHS(0) is pm = pm ·1+pm−1 ·0, which is trivial, and LHS(1) = RHS(1)
is pm+1(x1, · · · , xm, 1) = pm · p1(y1) + pm−1 · 1, which is the basic recurrence. Since
LHS(n) = ynLHS(n−1)+LHS(n−2) and RHS(n) = ynRHS(n−1)+RHS(n−2),
the result follows by induction. ¤

It will be useful to have some special values of the continuant. These are to be
used in conjunction with the corollary for full effect.
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Lemma 5. (1) pn(x1, . . . , xn−2, xn−1, 1) = pn−1(x1, . . . , xn−2, xn−1 + 1);
(2) pn(x1, . . . , xn−2, xn−1, 0) = pn−2(x1, . . . , xn−2).

Proof. Once again, let pk = pk(x1, . . . , xk) for k ≤ n − 1. Then

(18)
pn(x1, . . . , xn−2, xn−1, 1) = 1 · pn−1 + pn−2 = (xn−1pn−2 + pn−3) + pn−2

= (1 + xn−1)pn−2 + pn−3 = pn−1(x1, . . . , xn−2, xn−1 + 1).

The second equation follows immediately from Corollary 3. ¤

We remark that informal “proofs” of these equations are:

(19) xn−2 +
1

xn−1 +
1

1

= xn−2 +
1

xn−1 + 1
, xn−2 +

1

xn−1 +
1

0

= xn−2 +
1

∞ = xn−2.

Theorem 6. If m, n ≥ 1, then

(20)

pm+n+1(x1, . . . , xm, 0, y1, . . . , yn)

= pm+n−1(x1, . . . , xm + y1, . . . , yn) =

pm−1(x1, . . . , xm−1)pn(y1, . . . , yn) + pm(x1, . . . , xm)pn−1(y2, . . . , yn).

Proof. Both equalities can be proved by induction on n for fixed m; the second is
actually easier to show directly.

For the first, let pk = pk(x1, . . . , xk) again and for n ≥ 1, let

(21) an = pm+n+1(x1, . . . , xm, 0, y1, . . . , yn), bn = pm+n−1(x1, . . . , xm + y1, . . . , yn).

Then

(22)
a1 = y1pm+1(x1, . . . , xm, 0) + pm = y1pm−1 + pm

= y1pm−1 + (xmpm−1 + pm−2) = (y1 + xm)pm−1 + pm−2 = b1,

and

(23) a2 = y2a1 + pm−1 = y2b1 + pm−1 = b2.

Since an = ynan−1 + an−2 and bn = ynbn−1 + bn−2 for n ≥ 3, the result follows by
induction.

For the second identity, it is easier to argue directly, using Theorem 4:

(24)

pm+n+1(x1, . . . , xm, 0, y1, . . . , yn)

= pm+1(x1, . . . , xm, 0)pn(y1, . . . , yn) + pm(x1, . . . , xm)pn−1(y2, . . . , yn)

= pm−1(x1, . . . , xm−1)pn(y1, . . . , yn) + pm(x1, . . . , xm)pn−1(y2, . . . , yn).

¤
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The informal “proof” of the first of the equations is

(25) xn +
1

0 +
1

y1 +
1

· · ·

= xn + y1 +
1

· · ·.

Another identity of interest combines all of these:

Theorem 7. If m, n ≥ 1, then

(26)
pm+n+1(x1, . . . , xm, z, y1, . . . , yn) = zpm(x1, . . . , xm)pn(y1, . . . , yn)

+pm+n−1(x1, . . . , xm + y1, . . . , yn).

Proof. We first observe that continuants are multilinear polynomials, and hence

(27)
pm+n+1(x1, . . . , xm, z, y1, . . . , yn)

= A(x1, . . . , xm, y1, . . . , yn) · z + pm+n+1(x1, . . . , xm, 0, y1, . . . , yn).

for some function A, from first principles. We evaluate the constant term in (27) by
(20), and it suffices to compute the coefficient of z. By (17),

(28)
pm+n+1(x1, . . . , xm, z, y1, . . . , yn)

= pm+1(x1, . . . , xm, z)pn(y1, . . . , yn) + pm(x1, . . . , xm)pn−1(y2, . . . , yn)

and

(29) pm+1(x1, . . . , xm, z) = z · pm(x1, . . . , xm) + pm−1(x1, . . . , xm−1,

so the expression for A(x1, . . . , xm, y1, . . . , yn) is established. ¤

Corollary 8.

(30)
∂pn

∂xk

(x1, . . . , xn) = pk−1(x1, . . . , xk−1)pn−k(xk+1, . . . , xn).

The final identity has particular significance for the Stern sequence;

Theorem 9. For all n ≥ 1,

(31) pn(x1, . . . , xn)pn−2(x2, . . . , xn−1) = pn−1(x1, . . . , xn−1)pn−1(x2, . . . , xn)+ (−1)n.

Proof. First note that for n = 1, this equation is x1 · 0 = 1 · 1 + (−1)1, and for n = 2,
it’s (x1x2 + 1) · 1 = x1 · x2 + (−1)2, and both are true. Let

(32)
hn(x1, . . . , xn) =

pn(x1, . . . , xn)pn−2(x2, . . . , xn−1) − pn−1(x1, . . . , xn−1)pn−1(x2, . . . , xn).

Then hn is linear in xn, and after expanding by (7), we see that the coefficient of xn

is

(33)
pn−1(x1, . . . , xn−1)pn−2(x2, . . . , xn−1)

−pn−1(x1, . . . , xn−1)pn−2(x2, . . . , xn−1) = 0
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Thus hn does not depend on xn and

(34)

hn(x1, . . . , xn) = hn(x1, . . . , xn−1, 0) =

pn(x1, . . . , xn−1, 0)pn−2(x2, . . . , xn−1) − pn−1(x1, . . . , xn−1)pn−1(x2, . . . , xn−1, 0)

= pn−2(x1, . . . , xn−2)pn−2(x2, . . . , xn−1)−
pn−1(x1, . . . , xn−1)pn−3(x2, . . . , xn−2)

= −hn−1(x1, . . . , xn−1).

The result follows by induction. ¤

We conclude this section with an application to Fibonacci numbers. Let

(35) an = Pn(1, . . . , 1).

Then a0 = 1, a1 = 1, a2 = 2 and for n ≥ 2, (7) gives an = an−1 + an−2. It follows
that an = Fn+1. That is, assuming there are n denominators below, we have

(36) 1 +
1

1 +
1

. . . +

. . .

1 +
1

1

=
Fn+1

Fn

.

Theorem 1 implies that the polynomial pn(x1, . . . , xn) has Fn+1 terms, which im-
plies that |I(1, n)| = Fn+1. By setting xi, yj ≡ 1 in Theorem 4, we recover the
“known” addition formula:

(37) Fn+m+1 = Fn+1Fm+1 + FnFm.

Under the same conditions, Theorem 6 says that

(38) pm+n+1(1, . . . , 1, 0, 1 . . . , 1) = pm+n−1(1, . . . , 2, . . . , 1) = FmFn+1 + Fm+1Fn.

By Theorem 7, with z = 1,

(39) Fm+n+2 = Fm+1Fn+1 + pm+n−1(1, . . . , 2 . . . , 1)

This is actually nothing new; combining (38) and (39), we find that

(40) Fm+n+2 = Fm+1Fn+1 + FmFn+1 + Fm+1Fn = Fm+2Fn+1 + Fm+1Fn,

which is the addition formula, with m → m + 1. But it allows for a nice formula for
general z:

(41) pm+n+1(1, . . . , 1, z, 1 . . . , 1) = (z − 1)Fm+1Fn+1 + Fm+n+2.

Finally, Theorem 9 implies another familiar Fibonacci identity:

(42) Fn+1Fn−1 = F 2
n + (−1)n.
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2. The rule of four revisited

Recall that in the first set of notes, we considered an odd number n, 2r < n < 2r+1,
and wrote n ∼ [a1, . . . , a2v+1] if [n]2, the base 2 representation of n, consists of a1 1’s,
followed by a2 0’s, etc, ending with a2v+1 1’s. In this case

(43) r + 1 =
2v+1
∑

j=1

aj.

We have already proved that

(44)
s(n)

s(n + 1)
= a2v+1 +

1

a2v +
1

· · · + 1

a1

=
p2v+1(a2v+1, . . . , a1)

q2v+1(a2v+1, . . . , a1)
,

and in view of the last section,

(45) s(n) = p2v+1(a1, . . . , a2v+1), s(n + 1) = p2v(a1, . . . , a2v).

We also defined two related numbers. The first is the image of n in the reflection of
the r-th row of the diatomic array:

(46) n′ = 3 · 2r − n,

so that n = 2r + k =⇒ n′ = 2r+1 − k. (This is defined whether or not n is even or
odd. The second, ←−n , is defined for odd n by the property that [←−n ]2 is the reversal
of [n]2; that is,

(47) ←−n ∼ [a2v+1, . . . , a1].

The goal in this section is to show that “generically”, each value m occurs in the
r-th row of the diatomic array four times, and the successors are also related. (The
singular cases occur when [n]2 is a palindrome, or near-palindrome.)

Theorem 10. Suppose n is odd and s(n) = m, Then s(n′) = s(←−n ) = s(
←−
n′ ) = m.

Moreover,
←−
n′ = (←−n )′. Let s(n+1) = a, and let ā ∈ {1, m−1} satisfy aā ≡ 1 (mod m).

Then s(n′ + 1) = m − a, s(←−n + 1) = ā and s(
←−
n′ + 1) = m − ā. Moreover, if

n̆ = 2r+1 − 1 − n, then

(48) s(n + 1)s(←−n + 1) = s(n)s(n̆) + 1.

Proof. The equation s(n) = s(n′) follows either intuitively from the picture of the
diatomic array, or from the basic recurrence: if 0 ≤ k ≤ 2r, then

(49)
s(2r + k) = s(2r · 1 + k) = s(2r − k)s(1) + s(k)s(1 + 1)

= s(2r − k) + s(k) = s(2r − (2r − k)) + s(2r − k) = s(2r + (2r − k)).

Since n is odd, s(n − 1) + s(n + 1) = s(n), hence s(n − 1) = m − a. And since
2r ≤ n − 1 < 2r+1, n′ + 1 = (n − 1)′ and we have s(n′ + 1) = m − a.
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We look more carefully at n′. Suppose

(50) n = 2r +

(

r−1
∑

k=1

ǫk2
k

)

+ 1, ǫk ∈ {0, 1}.

Then it is easy to compute [n′]2:

(51) n′ = 3 · 2r − n = 2r+1 +
r−1
∑

k=1

2k + 2 · 1 − n = 2r +
r−1
∑

k=1

(1 − ǫk)2
k + 1.

Informally, [n]2 must begin and end in “1”; [n′]2 flips all digits except the first and
last. A pattern of a1 > 1 1’s, followed by a2 0’s, etc., turns into one 1, a1 − 1 0’s, a2

1’s, etc, whereas one 1, followed by a2 0’s, a3 1’s, etc become 1 + a2 0’s, a3 1’s, etc.
The same thing happens at the end (in reverse of course). In short (assuming that
a1 > 1 and a2v+1 > 1 if they appear below):

(52)

n ∼ [a1, . . . , a2v+1] =⇒ n′ ∼ [1, a1 − 1, . . . , a2v+1 − 1, 1],

n ∼ [1, a2 . . . , a2v, 1] =⇒ n′ ∼ [a2 + 1, . . . , a2v + 1],

n ∼ [a1, . . . , a2v, 1] =⇒ n′ ∼ [1, a1 − 1, . . . , a2v + 1],

n ∼ [1, a2 . . . , a2v, a2v+1] =⇒ n′ ∼ [a2 + 1, . . . , a2v+1 − 1, 1].

In each of these four cases, it follows directly from Lemma 5(1) that s(n) = s(n′);
informally, “1”’s at either end of the argument of a continuant can be absorbed by
their nearest neighbor. Also, the symmetries in these equations make it clear that←−
n′ = (←−n )′.

We turn to the reversals. In view of our earlier remarks,

(53) s(n) = p2v+1(a2v+1, . . . , a1) = p2v+1(a1, . . . , a2v+1) = s(←−n ) = s(
←−
n′ ).

We have also seen from our earlier formulas that

(54) s(n + 1) = p2v(a1, . . . , a2v); s(←−n + 1) = p2v(a2, . . . , a2v+1).

It follows immediately from Theorem 9 that

(55) s(n)p2v−1(a, . . . , a2v) = s(n + 1)s(←−n + 1) + (−1)2v+1,

hence s(n + 1)s(←−n + 1) ≡ 1 (mod s(n)). Since s(n + 1) = a and 1 ≤ s(←−n + 1) ≤ m,
we must have s(←−n + 1) = ā.

It is worth taking the time to interpret p2v−1(a2, . . . , a2v). First, we need an alter-
native expression for n. We claim that n ∼ [a1, . . . , a2v+1] implies that

(56) n = 2c1 − 2c2 + − · · · + 2c2v+1 − 1,

where

(57) ck =
2v+1
∑

i=k

ai.
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The easiest way to prove this is by induction, and was done, I think, in the first set
of notes. When v = 0, if [n]2 consists of a1 1’s, then clearly n = 2a1 − 1. Supposing
the formula is valid as given and [n̄]2 consists of [n]2, followed by a2v+2 0’s and a2v+3

1’s, then

(58) n̄ = 2a2v+2+a2v+3n + 2a2v+3 − 1,

which, upon a small amount of reflection, establishes the inductive step.
Recall that c1 = r + 1 and c2v+1 = a2v+1, so that

(59) 2r+1 − 1 − n = 2c2 − 2c3 + − · · · 2c2v+1 := 2a2v+1n̆.

Let c̆k = ck − a2v+1. Then

(60) n̆ = 2c̆2 − 2c̆3 + − · · · + 2c̆2v − 1.

Thus, n̆ ∼ [a2, . . . , a2v]. That is, the outer blocks of 1’s in [n]2 are tossed aside and
the other blocks flip parity. We have

(61) s(2r+1 − 1 − n) = s(2a2v+1n̆) = s(n̆) = p2v−1(a2v, . . . , a2) = p2v−1(a2, . . . , a2v),

and the last formula is established. ¤

Example. For example, suppose n = 35. Then [n]2 = [100011]2, so n ∼ [1, 3, 2], hence←−n ∼ [2, 3, 1] and [←−n ]2 = [110001]2, so that ←−n = 49. We also have n′ = 3·32−n = 61,

[n′]2 = [111101], so n′ ∼ [4, 1, 1]2 = [3+1, 2− 1, 1]2, and
←−
n′ ∼ [1, 1, 4]2 so that [

←−
n′ ]2 =

[101111]2, hence
←−
n′ = 47(= 3 · 32 − 49). As a check, a = s(n + 1) = s(36) = 4 and

s(←−n +1) = s(50) = 7, s(n′+1) = s(62) = 5 = 9−4 and s(
←−
n′ +1) = s(48) = 2 = 9−7.

Finally, 26−n−1 = 28, so n̆ = 2−2 ·28 = 7 and s(n̆) = 3, and indeed, 4 ·7 = 3 ·9+1.

Finally, we report a peculiar result which will become valuable in the discussion of
the Minkowski ?-function.

Theorem 11. Suppose n is odd, 2r0 < n < 2r0 + 1 and r ≥ r0 + 1. Then

(62)
s(2r + n)

s(n)
=

s((
←−−−
2r + n)′)

s((
←−−−
2r + n)′ + 1)

.

Proof. The equality of the numerators is clear from Theorem 10. We unpack the
denominator. First observe that [2r + n]2 consists of one “1”, followed by r − r0 − 1

0’s (possibly none) and then [n]2. Thus, [
←−−−
2r + n]2 consists of [←−n ]2, followed by r −

r0 − 1 0’s (possibly none) and followed by one “1”, and so
←−−−
2r + n − 1 = 2r−r0←−n and

s(
←−−−
2r + n − 1) = s(n). Finally, we observe once again that, with m =

←−−−
2r + n, since

2r ≤ m−1 < 2r+1, we have (m−1)′ = m′+1, so the denominators are equal too. ¤
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3. Some specific examples

We can apply the continued fraction formulas from the first section to the Stern
sequence. What follows is far from exhaustive, but may serve to inspire you in
considering the second homework assignment!

Example. We return to problem 6 on the first homework, restricting the sign. Suppose
we are interested in computing s[2rn + k] for r ≥ r0 = ⌈log2 k⌉; that is, 2r0−1 < k <
2r0 . (We might as well assume k is odd and can rule out k = 1, because we know the
result in this case. Suppose k ∼ [b1, . . . , b2w+1]; as we have seen, r0 =

∑

j bj. Suppose

also that n ∼ [a1, . . . , a2v+1]. Then,

(63)
N = 2rn + k = 2r ·

(

2a1+···+a2v+1 − + · · · + 2a2v+1 − 1
)

+2b1+···+b2w+1 − + · · · + 2b2w+1 − 1

so

(64)
N ∼ [a1, . . . , a2v+1, r − r0, b1, . . . , b2w+1] =⇒

s[N ] = p2v+2w+3(a1, . . . , a2v+1, r − r0, b1, . . . , b2w+1).

It follows by Theorem 7 that

(65)
s[N ] = (r − r0)p2v+1(a1, . . . , a2v+1)p2w+1(b1, . . . , b2w+1)

+p2v+2w+1(a1, . . . , a2v+1 + b1, . . . , b2w+1).

We already know that p2v+1(a1, . . . , a2v+1) = s(n) and p2w+1(b1, . . . , b2w+1) = s(k).
We claim that the last expression in (65) is s(2r0n + k). Indeed, looking at (63) with
r = r0, we see that 2r0(−1) cancels 2b1+···+b2w+1 , so that [2r0n + k] ∼ [a1, . . . , a2v+1 +
b1, . . . , b2w+1].

We believe that s(2rn − k) can be handled in a similar, but less interesting way,
and omit the details.

For the last example, we adopt exponential notation in a transparently obvious
way, so that, for example, (35) becomes an = pn(1n) [yes, it should be lower case, a
typo in the last installment], and

(66) pn(1n) = Fn+1

There should be no confusion about expressions such as pn+m(1m2n), etc.

Example. Recall our discussion from Notes, I about

(67) nr =
2r+2 − (−1)r

3
=

4

3
· 2r − (−1)r

3
.

We showed that s(nr) = Fr+2 and for 2r < n < 2r+1, s(n) achieves its maxima at nr

and n′
r. It is worth duplicating the computation of s(nr) using our current techniques,

though we do not address the question of the maximum. First suppose r = 2t. Then

(68) n2t =
22t+2 − 1

22 − 1
= 22t + 22t−2 + · · · + 22 + 1
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That is, [n2t]2 = [1010 · · · 101]2, so n2t ∼ [12t+1], and so s[n2t] = p2t+1(1
2t+1) = F2t+2,

as we’d expect. The situation is a little trickier for r = 2t + 1:

(69) n2t+1 =
22t+3 + 1

22 − 1
= 2n2t + 1 = 22t+1 + 22t−1 + · · · + 23 + 21 + 1.

That is, [n2t+1]2 = [1010 · · · 1011]2, so n2t+1 ∼ [12t2] and s[n2t+1] = p2t+1(1
2t2). By

Lemma 5, we can stretch that last “2” into “11”, so s[n2t+1] = p2t+2(1
2t+2) = F2t+3,

again, as expected. Notice that ←−n2t = n2t and, somewhat less obviously, ←−−−n2t+1 = n′
2t+1,

which explains why these maxima occur twice, rather than four times.
We now compute s(nr ± 2). There are two cases, depending on whether r is even

or odd. By staring at the formulas for [nr]2, we see that

(70)

n2t + 2 = 22t + 22t−2 + · · · + 24 + 22 + 21 + 1,

n2t − 2 = 22t + 22t−2 + · · · + 24 + 21 + 1,

n2t+1 + 2 = 22t+1 + 22t−3 + · · · + 25 + 23 + 22 + 1,

n2t+1 − 2 = 22t+1 + 22t−3 + · · · + 25 + 23 + 1.

Thus,

(71)

s(n2t + 2) = p2t−1(1
2t−2, 3),

s(n2t − 2) = p2t−1(1
2t−3, 2, 2),

s(n2t+1 + 2) = p2t+1(1
2t−2, 2, 1, 1) = p2t(1

2t−2, 2, 2),

s(n2t+1 − 2) = p2t+1(1
2t−1, 2, 1) = p2t(1

2t−1, 3).

More generally, using Theorem 4 to separate out the 1’s, observe that

(72)
pn(1n−1a) = a · pn−1(1

n−1) + 1 · pn−2(1
n−2) = aFn + Fn−1,

pn(1n−2ab) = (ab + 1)pn−2(1
n−2) + b · pn−3(1

n−3) = (ab + 1)Fn−1 + bFn−2.

It follows that

(73)
s(n2t + 2) = 3F2t−1 + F2t−2, s(n2t+1 − 2) = 3F2t + F2t−1,

s(n2t − 2) = 5F2t−2 + 2F2t−3, s(n2t+1 + 2) = 5F2t−1 + 2F2t−2.

By iterating the Fibonacci recurrence, it is easy to see that Fn+2 = 3Fn−1 + 2Fn−2,
hence:

(74)
Fn+2 − (3Fn−1 + Fn−2) = Fn−2;

Fn+2 − (5Fn−2 + 2Fn−3) = 3(Fn−1 − Fn−2) − 2Fn−3 = Fn−3.

We summarize this computation.

Theorem 12.

(75) s(n2t + 2(−1)t) = F2t+2 − F2t−2, s(n2t − 2(−1)t) = F2t+2 − F2t−3.
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We believe, but have not yet proved, that the second largest value attained by the
Stern sequence in 2r ≤ n ≤ 2r+1 is, in fact, Fr+2 − Fr−3, at least for sufficiently large
values of r.

Example. One final example was found by computer exploration. Let

(76) mr =
(2r − 1)(2r+1 − 1)

3
=

22r+1 + 1

3
− 2r = n2r−1 − 2r.

(Even without the other expression, m+r has to be integral because one of {r, r+1}
is even, making one of the factors in the numerator a multiple of 3. We wish to show
that

(77) s(m2t) = 3F 2
2t, s(m2t+1) = F 2

2t+2.

The proof is just a computation. Recall that pn(1n) = Fn+1 and pn(1n−12) =
pn+1(1

n+1) = Fn+2.
First, if r = 2t is even, then

(78)

m2t = n4t−1 − 22t

= 24t−1 + · · · + 22t+3 + 22t+1 − 22t + 22t−1 + · · · + 23 + 21 + 1

= 24t−1 + · · · + +22t+3 + 22t + 22t−1 + · · · + 23 + 21 + 1,

so [m2t] ∼ [12t−32212t−32] and so

(79)

s[m2t] = p4t−3(1
2t−32212t−32) = p4t−2(1

2t−32212t−1)

= p2t−2(1
2t−32)p2t(212t−1) + p2t−3(1

2t−3)p2t−1(1
2t−1)

= F2tF2t+2 + F2tF2t−2 = F2t(3F2t) = 3F 2
2t.

The other case is similar and will be written up in the next batch of notes.

4. Corrections and typos

The first thing I’d like to do is clarify a nasty little point that I tried to avoid
earlier. Recall that we were talking about linear recurrences and we assumed that

(80) an +
d

∑

j=1

cjan−j = 0, n ≥ d,

where cd 6= 0.
What happens if cd = 0? In the presentation we gave, it messes things up, because

the characteristic polynomial φ(t) has a root at 0, and this means that the reciprocal
polynomial ψ(t) fails to have constant term 1. But mathematical presentations are
just a subset of mathematical reality!

Suppose

(81) an +
d

∑

j=1

cjan−j = 0, n ≥ d,
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and ck 6= 0, with cj = 0 for k + 1 ≤ j ≤ d. Then, as far as the actual equations go,
we have

(82) an +
k

∑

j=1

cjan−j = 0, n ≥ d,

In other words, no equation involves ai for i < d − k. To be tedious, if we let
bn = an+(d−k), then it is true that

(83) bn +
k

∑

j=1

cjbn−j = 0, n ≥ k,

and the usual method gives us

(84)

bn =
r

∑

j=1

pj(n)zn
j (for n ≥ 0)

=⇒ an =
r

∑

j=1

pj(n − (d − k))zn−d−k
j (for n ≥ d − k),

and an is arbitrary for n < d − k. Since there exist polynomials p̄j so that

(85) p̄j(n) = pj(n − (d − k))z
−(d−k)
j ,

we are justified in saying that the closed formula is “valid” for n ≥ d−k. Nineteenth
century mathematicians saw that 0n could be construed as having the value 1 at
n = 0 and 0 for n > 0. However, nk0n does not take a non-zero value only at n = k,
so they invented some ugly notations to take care of it. I think it’s easier to say that
we have a formula for an if n ≥ n0.

Why does this matter? As was pointed out to me, in the Notes, III (Second
supplement), we studied an important sequence (At(r)) for which At(r + 1) = At(r)
for r ≥ 1, I glossed over this issue in my original discussion, and if you’ll forgive some
mixed notations, what’s really going on is that (At(r)) satisfies the linear recurrence:

(86) an + (−1) · an−1 + 0 · an−2 = 0, n ≥ 2,

What this means is simply that At(1) = At(2) = At(3) = · · · , with no information
about At(0). That’s all, and that’s why the proof of Theorem 2 on p.3 is so awkward.
We can’t go from ∆(m) to ∆(2m), but we can say that ∆(2m) = ∆(4m).

Finally, a few egregious errors from the second installment of Notes, IV. (What I
get from trying to write things up an hour before class.) I won’t bother with un-closed
parentheses and the like, which are annoying but don’t affect the meaning.
• p.9 In the statement of Theorem 11, the condition should be n < 2r0+1 not

n < 2r0 + 1.
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• p.11 Theorem 12 is somewhat garbled: Equation (75) should read (forgive the
labels)

(87) s(nr + 2(−1)r) = Fr+2 − Fr−2 s(nr − 2(−1)r) = Fr+2 − Fr−3.

5. Some specific examples, continued and corrected

We now present the final example in one whole.

Example. One final example was found by computer exploration. Let

(88) mr =
(2r − 1)(2r+1 − 1)

3
=

22r+1 + 1

3
− 2r = n2r−1 − 2r.

(Even without the other expression, mr has to be integral because one of {r, r +1} is
even, making one of the factors in the numerator a multiple of 3.) We wish to show
that

(89) s(m2t) = 3F 2
2t, s(m2t+1) = F 2

2t+2.

The proof is just a computation. Recall from earlier notes that pn(1n) = Fn+1,
pn(1n−12) = pn+1(1

n+1) = Fn+2, pn(1n−13) = 3Fn + Fn−1, and Fn+2 + Fn−2 = 2Fn +
Fn−1 + Fn−2 = 3Fn.

First, if r = 2t is even, then

(90)

m2t = n4t−1 − 22t

= 24t−1 + · · · + 22t+3 + 22t+1 − 22t + 22t−1 + · · · + 23 + 21 + 1

= 24t−1 + · · · + +22t+3 + 22t + 22t−1 + · · · + 23 + 21 + 1,

so [m2t] ∼ [12t−32212t−32] (binary “10101” becomes “10011”) and so

(91)

s[m2t] = p4t−3(1
2t−32212t−32) = p4t−2(1

2t−32212t−1)

= p2t−2(1
2t−32)p2t(212t−1) + p2t−3(1

2t−3)p2t−1(1
2t−1)

= F2tF2t+2 + F2tF2t−2 = F2t(3F2t) = 3F 2
2t.

If r = 2t + 1 is even, then

(92)
m2t+1 = n4t+1 − 22t+1

= 24t+1 + · · · + 22t+3 + 22t−1 + · · · + 23 + 21 + 1,

so [m2t+1] ∼ [12t−1312t−22] (binary “10101” becomes “10001”), and so

(93)

s[m2t+1] = p4t−1(1
2t−1312t−22) = p4t(1

2t−1312t)

= p2t(1
2t−13)p2t(1

2t) + p2t−1(1
2t−1)2 = (3F2t + F2t−1)F2t+1 + F 2

2t

= (F2t+2 + F2t)(F2t+2 − F2t) + F 2
2t = F 2

2t+2.

Less interesting computations give s(nr ± 2j) for other values of j.
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Since 22r−1 < mr, n2r−1 < 22r, it is interesting to compare s[mr] with s[n2r−1], the
maximum value of s[n] in that range. A routine computation, which we omit, shows
that

(94)

lim
r→∞

s[m2t]

s[n4t−1]
= lim

r→∞

3F 2
2t

F4t+1

=
3(5 −

√
5)

10
;

lim
r→∞

s[m2t+1]

s[n4t+1]
= lim

r→∞

F 2
2t+2

F4t+3

=
(5 +

√
5)

10
.

6. The rule of four revisited, revisited

We complete our discussion with a look at a few more continued fractions. Recall
that

(95)

s(n)

s(n + 1)
= a2v+1 +

1

a2v +
1

· · · + 1

a1

=
p2v+1(a1, . . . , a2v+1)

p2v(a1, . . . , a2v)
,

s(←−n )

s(←−n + 1)
= a1 +

1

a2 +
1

· · · + 1

a2v+1

=
p2v+1(a1, . . . , a2v+1)

p2v(a2, . . . , a2v+1)
.

For completeness sake, we consider the other two fractions. As before, suppose that
s(n) = m and s(n + 1) = a, then s(n′) = m and s(n′ + 1) = m − a and since

(96)
m

m − a
= 1 +

a

m − a
= 1 +

1

m − a

a

= 1 +
1

m

a
− 1

,

we have, formally,

(97)
s(n′)

s(n′ + 1)
= 1 +

1

a2v+1 − 1 +
1

a2v +
1

· · · + 1

a1

.

This is very familiar, but we must be alert to two cases. If a2v+1 > 1 (that is, iff m
a
≥ 2

iff a < m − a), then this is a genuine continued fraction representation. However, if
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a2v+1 = 1, then the expression simplifies:

(98)
s(n′)

s(n′ + 1)
= 1 +

1

0 +
1

a2v +
1

· · · + 1

a1

= 1 + a2v +
1

a2v−1 +
1

· · · + 1

a1

.

This should look familiar. The same sort of thing happens for s(
←−
n′ ) and s(

←−
n′ + 1),

and because of the importance (see Thm. 11 in Notes, IV), we write it out: if a1 > 1,
then

(99)
s(
←−
n′ )

s(
←−
n′ + 1)

= 1 +
1

a1 − 1 +
1

a2 +
1

· · · + 1

a2v+1

,

and if a1 = 1, then

(100)
s(
←−
n′ )

s(
←−
n′ + 1)

= 1 + a2 +
1

a23 +
1

· · · + 1

a2v+1

.

Finally, we spend a second talking about an obvious unanswered question: what
about

(101)
p2v(a1, . . . , a2v)

p2v−1(a1, . . . , a2v−1)
?

It’s convienient, if inconsistent, to write n̂ ∼ [a1, . . . , a2v−1], so that, as before,
n = 2a2v+a2v+1n̄ + 22v+1 − 1. Then,

(102) p2v(a1, . . . , a2v) = s(n + 1) = s(2a2v+a2v+1n̄ + 22v+1) = s(2a2v n̄ + 1),

and since s(n̄) = p2v−1(a1, . . . , a2v−1), we have our answer:

(103)
p2v(a1, . . . , a2v)

p2v−1(a1, . . . , a2v−1)
=

s(2a2v n̄ + 1)

s(2a2v n̄)
=

s((2a2v n̄ + 1)′)

s(2a2v n̄ + 1)′ + 1)

Some questions may be better left unasked. Actually, it is an interesting exercise
to calculate [(2a2v n̄ + 1)′]2, which (in this draft at least) we shall leave to the reader.
There are, as one might expect, four cases, depending on whether a1 = 1 or a1 > 1
and whether a2v = 1 or a2v > 1.



STERN NOTES, CHAPTER 4 (FIRST DRAFT) 17

7. Polynomials mapping to Z

There is a decided contrast between what we’ve seen about the growth of s(f(2r)),
where f ∈ Z[x] (basically polynomial) and the basically exponential growth in s(nr),
even though nr is basically linear in 2r. (It is more accurate to say that, because
of the “(−1)r” in the definition, n2r and n2r+1 are separately quadratic in r, as is
mr.) Of course there are denominators in these case. The intuitive reason is that
the base 2 representations of f(2r) are all the same for sufficiently large r, except for
certain blocks whose size is linear in r. The polynomial comes from plugging linear
entries into a continuant of fixed index. On the other hand, the base 2 representation
of nr and mr contain of blocks of fixed size, so that bounded entries are put into a
continuant of linearly increasing index.

In order to see what’s going on, we make a detour into some very classical results
on polynomials. Let Pd denote the set of real polynomials of degree ≤ d and let

(104) Pd,Z = {f ∈ Pd : f : Z → Z}.
Certainly, Pd ∩ Z[x] ⊆ Pd,Z, but the inclusion is not strict; e.g., x(x−1)

2
∈ P2,Z. More

generally, define x(k) recursively by

(105) x(0) = 1, x(k) = x · (x − 1)(k−1) = x(k−1)(x − (k − 1)), k ≥ 1.

It is customary and natural to write

(106)

(

x

k

)

=
x(k)

k!
,

since, when k ≤ x ∈ N, we recover the usual binomial coefficient:

(107)

(

x

k

)

=
x(k)

k!
=

x(x − 1) · · · (x − (k − 1))

k!
=

x!/(x − k)!

k!
.

It follows from the definition that
(

x

k

)

= 0 for x = 0, . . . , k − 1 and if x = −y < 0,
then

(108)

(

x

k

)

=

(−y

k

)

=
(−y)(−y − 1) · · · (−y − (k − 1))

k!

= (−1)k · (y + k − 1) · · · (y + 1)y

k!
= (−1)k

(

y + k − 1

k

)

.

It follows that x ∈ Z =⇒
(

x

k

)

∈ Z and so
(

x

k

)

∈ Pd,Z for 0 ≤ k ≤ d. Indeed,

{
(

x

k

)

, 0 ≤ k ≤ d} is easily seem to be an “upper diagonal” basis for Pd.
One of the standard approaches to understanding polynomials from their values

is Lagrange interpolation. Fix x0 < x1 · · · < xd. Observe that if f, g ∈ Pd and
f(x) = g(x) for x = xj, 0 ≤ j ≤ d, then there exists h ∈ R[x] so that

(109) f(x) − g(x) = h(x) ·
(

d
∏

j=0

(x − xj)

)

;
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degree considerations imply that h = 0, so f = g. We now define

(110) φj(x0, . . . , xd; x) = φj(x) :=
∏

i6=j

x − xi

xj − xi

∈ Pd.

Then φj(xi) = 0 for i 6= j and φj(xj) = 1. It follows that

(111) Ld,f (x) :=
d

∑

i=0

f(xi)φi(x) ∈ Pd

has the property that Ld,f (xj) = f(xj) and so, in fact, f = Ld,f . That is, a polynomial
in 1 variable of degree d is completely determined by its value at d + 1 distinct
points. There is no such “clean” criterion for polynomials in more than 1 variable,
unfortunately.

Observe that, if we take xi = i, then

(112)

φj(x) :=
∏

i6=j

x − i

j − i
=

j−1
∏

i=0

(

x − i

j − i

) d
∏

i=j+1

(

x − i

j − i

)

= (−1)d−j

(

x

j

)(

x − (j + 1)

d − j

)

∈ Pd,Z.

Thus, if f ∈ Pd,Z, then since f(i) ∈ Z, we have that f is a Z-linear combination of
{φ0, . . . , φd}, and conversely, any such linear combination is in Pd,Z. This character-
ization is somewhat unsatisfactory, however. If deg(f) = k, then f ∈ Pd for every
d ≥ k, yet the representations in terms of Lagrange interpolation are different for each
such d, because every polynomial φj(x0, . . . , xd; x has exact degree d. If f ∈ Pd,Z has
actual degree k, we’d prefer that it only be represented in terms of polynomials with
degree ≤ k, so that the representations don’t change as we increase d.

One way to deal with this is to look for a different basis. Define the operator ∆ by

(113) ∆f(x) := f(x + 1) − f(x).

Since

(114) ∆9xk) = (x + 1)k − xk =
k−1
∑

i=0

(

k

i

)

xi,

∆ : Pd → Pd−1. The telescoping sum

(115) f(n) − f(m) =
n−1
∑

x=m

f(x + 1) − f(x) =
n−1
∑

x=m

∆f(x)

for m < n implies that f ∈ Pd,Z if and only if f(0) ∈ Z and ∆p ∈ Pd−1,Z. If we define
∆k(f) = ∆(∆k−1(f)) as usual, we can iterate this result to say that

(116) f ∈ Pd,Z ⇐⇒ f(0), (∆f)(0), (∆2f)(0), . . . , (∆df)(0) ∈ Z.
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This is most easily visualized by writing down a difference table in which the first
row is f(n), n ≥ 0, the second row is (∆f)(n), n ≥ 0, etc, until all 0’s appear in the
(d + 1)-st row. For example, if f(x) = x3, the difference table is

(117)

. . . 0 1 8 27 64 125 . . .

. . . 1 7 19 37 61 . . .

. . . 6 12 18 24 . . .

. . . 6 6 6 . . .

. . . 0 0 . . .

We now make a 17th century set of observations. Note that for k ≥ 1,

(118)

∆(x(k)) = (x + 1)(k) − x(k) = ((x + 1) − (x − (k − 1)))x(k−1) = kx(k−1)

=⇒ ∆

(

x

k

)

=

(

x

k − 1

)

.

and ∆(x(0)) = 1 − 1 = 0. Thus,

(119)

f(x) =
d

∑

k=0

ak

(

x

k

)

=⇒ ∆f(x) =
d

∑

k=1

ak

(

x

k − 1

)

=
d−1
∑

k=0

ak+1

(

x

k

)

(

=⇒ ∆jf(x) =

d−j
∑

k=0

ak+j

(

x

k

)

.

)

Conveniently enough,

(120) x(k)
∣

∣

x=0
=

{

1 if k = 0,

0 if k > 0.

Thus, if f is given as above, then

(121) ak = (∆kf)(0),

or, to write it as the traditional Newton’s formula, if f ∈ Pd, then

(122) f(x) =
d

∑

k=0

(∆kf)(0)

k!
x(k).

Using x3 as an example, from the difference table given above, we see that

(123) x3 = 0 ·
(

x

0

)

+ 1 ·
(

x

1

)

+ 6 ·
(

x

2

)

+ 6 ·
(

x

3

)

= x + 3x(x− 1) + x(x− 1)(x− 2),

as may be easily verified. The similarity to Taylor’s formula is no accident of course,
the differentiation operator D has the same matrix on Pd with respect to the basis
{ 1

k!
· xk : 0 ≤ k ≤ d} as does ∆ on Pd with respect to the basis {

(

x

k

)

: 0 ≤ k ≤ d}.
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In particular, we see that f ∈ Pd,Z if and only if f is a Z-linear combination
of {

(

x

0

)

, . . .
(

x

d

)

}, and if deg f = k < d, then only {
(

x

0

)

, . . .
(

x

k

)

} is needed, so the
representations do not depend on d as it increases.

It is almost obligatory here to observe that since ∆ and
∑

are inverse operations,
we obtain summation formulas at virtually no cost. For k ≥ 0,

(124)
n

∑

x=0

(

x

k

)

=
n

∑

x=0

((

x + 1

k + 1

)

−
(

x

k + 1

))

=

(

n + 1

k + 1

)

−
(

0

k + 1

)

=

(

n + 1

k + 1

)

.

In a method that goes back to Bernoulli, this allows us to sum any polynomial, after
merely writing down its difference table. For example,

(125)

n
∑

x=0

x3 = 1 ·
(

n + 1

2

)

+ 6 ·
(

n + 1

3

)

+ 6 ·
(

n + 1

4

)

=
(n + 1)n

2
+ (n + 1)n(n − 1) +

(n + 1)n(n − 1)(n − 2)

4

=
n(n + 1)

4
(2 + 4(n − 1) + (n − 1)(n − 2)) =

n2(n + 1)2

4
.

But this isn’t really what we are interested in! Let

(126) Pd,2N = {f ∈ Pd : f(2r) ∈ Z, for sufficiently large r}
Clearly, if f ∈ Pd,Z, then f ∈ Pd,2N , and if f ∈ Pd,2N , then 2−mf ∈ Pd,2N . Further,
we can always replace f(x) by f(2r0x) to assume, without loss of generality, that
f(2r) ∈ Z for r ≥ 0. Also notice that Pd,2N is closed under addition and multiplication
(when degrees are adjusted.)

In the rest of this section, we assume that f ∈ Pd and Mf ∈ Z[x] for an odd de-
nominator M , and M is minimal with this property, so that the gcd of the coefficients
of Mf is a power of 2; without loss of generality, we can take this gcd to be 1.

First, suppose d = 1, f ∈ P1,2N and Mf(x) = g(x) = a1x + a0. We derive a
contradiction from M > 1. Suppose otherwise, and let p be a prime factor of M . Then
M (and so p) will divide both g(2) = Mf(2) = 2a1 +a0 and g(1) = Mf(1) = a1 +a0,
and so p divides both

(127) 2a1 + a0 − (a1 + a0) = a1 and − (2a1 + a0) + 2(a1 + a0) = a0.

That is, (M/p)f ∈ Z[x]. This contradicts the minimality of M , so P1,2N consists of
the linear polynomials in Z[x].

We have seen that f(x) =
(

x

k

)

∈ Pd,Z ⊆ Pd,2N , but the odd part of the denominator

may not be large. In fact, up to powers of 2,
(

x

2

)

∈ Z[x]. On the other hand, we

have already seen that x2−1
3

, 2x2+1
3

∈ P2,2N . We now show that these are essentially
the only cases.

Suppose f ∈ P2,2N , and for r ≥ 0, we have f(2r) ∈ Z. Suppose g(x) = Mf(x) =
a2x

2+a1x+a0, where M is again minimal and suppose pk is a prime power factor of M .
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We first show that p = 3 and then that k = 1. By hypothesis, f(1), f(2), f(4) ∈ Z,
so that

(128) g(x) := a2x
2 + a1x + a0 ≡ 0 (mod p), for x = 1, 2, 4.

Recall that Z/pZ is a field, and so g is identically zero if it has three distinct zeros.
Thus, if p > 3, then each ai is a multiple of p, contradicting the minimality of M .
Now suppose M = 3k with k ≥ 2, so 32 | M . We have to be a bit careful, because
Z/9Z is not a field. (Indeed, the polynomial 3(x2−1) has 6 zeros in Z/9Z.) However,
assuming

(129) g(x) = a2x
2 + a1x + a0 ≡ 0 (mod 9), for x = 1, 2, 4.

we note that

(130)

h(4) − 3h(2) + 2h(1) = 6a2 ≡ 0 (mod 9),

−h(4) + 5h(2) − 4h(1) = 2a1 ≡ 0 (mod 9),

h(4) − 6h(2) + 8h(1) = 3a0 ≡ 0 (mod 9).

Thus a0, a1 and a2 are all multiples of 3, violating minimality once again. In the end,
M = 3, and we have a2x

2 + a1x + a0 ≡ a2(x− 1)(x− 2) (mod 3); that is, a1 ≡ 0 and
a0 ≡ −a2. It follows that

(131) f(x) = a2 ·
x2 − 1

3
+ q(x), q ∈ Z[x].

Thus, P2,2N/(Z[x]) = {0, x2−1
3

, 2x2+1
3

}.
This situation will clearly get messier as d increases. For example, if q ∈ Z[x]∩Pd−2,

then x2−1
3

q ∈ Pd,2N . On the other hand, a similar argument to that given above shows
that if prime p | M for p ∈ Pd,2N , then ordp(2) ≤ d, hence

(132) p | M(d) :=
d

∏

k=1

(2k − 1).

We now present Λd ∈ Pd,2N which has M(d) as its denominator. We do not yet claim
that νp(M) ≤ νp(Md) for all f ∈ Pd,2N , but that is a reasonable conjecture. We need
a lemma of independent interest, which is surely known in cases where the variable
is “q”, rather than “x”.

Lemma 13. For d, r ∈ N, let

(133) Fr,d(x) =

d
∏

i=1

(xr+i − 1)

d
∏

i=1

(xi − 1)

∈ Z[x].

Then Fr,d(x) ∈ Z[x].
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Proof. Recall that for e, n ∈ N,

(134)

⌊

n

e

⌋

−
⌊

n − 1

e

⌋

=

{

1 if e | n,

0 otherwise.

Recall also that the cyclotomic polynomials Φe(x) ∈ Z[x] are irreducible and have
the property that for every n ∈ N,

(135) xn − 1 =
∏

e | n

Φe(x) =
∞
∏

e=1

Φ
⌊n

e
⌋−⌊n−1

e
⌋

e (x)

The only factors in the denominator of Fr,d(x) are powers of Φe(x) for e ≤ d, and the
net exponent in the quotient is

(136)

d
∑

i=1

(⌊

r + i

e

⌋

−
⌊

r + i − 1

e

⌋)

−
d

∑

i=1

(⌊

i

e

⌋

−
⌊

i − 1

e

⌋)

=

⌊

r + d

e

⌋

−
⌊

r

e

⌋

−
⌊

d

e

⌋

≥ 0.

¤

It follows from this lemma that

(137) Fr,d(2) =

d
∏

i=1

(2r+i − 1)

d
∏

i=1

(2i − 1)

∈ Z.

for all d and r ≥ 0, and so

(138) Λd(x) :=
d

∏

i=1

2ix − 1

2i − 1
∈ Pd,2N .

Observe that the denominator in Λd is our friend M(d). Let

(139) Λ̄d(x) =
d

∏

i=1

x − 2i−1

2i − 1
∈ Pd,2N .

Observe that Λ̄d(2
r) = 0 for r = 0, 1, . . . , d − 1 and that

(140) Λ̄d(2
r) =

d
∏

i=1

2r − 2i−1

2i − 1
=

d
∏

i=1

2i−1(2r−i+1 − 1)

2i − 1
= 2(

d

2)Λd(2
r−d).

Thus, Λ̄d ∈ Pd,2N as well, and s(Λ̄d(2
r)) = s(Λd(2

r−d). Finally, note that

(141) Λ̄2(2
r) =

(2r − 1)(2r−1 − 1)

(2 − 1)(4 − 1)
= mr−1.
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Although there is a nice pattern to s(mr), if we let

(142) ℓr = Λ̄3(2
r) =

(2r − 1)(2r−1 − 1)(2r−2 − 1

(2 − 1)(4 − 1)(8 − 1)
,

then the pattern for ar = s(ℓr) is less clear, though it begins promisingly enough:

(143) a3 = 1, a4 = 4, a5 = 27, a6 − 100, a7 = 256, a8 = 484.

That is, 1, followed by four squares and one cube. Then a9 = 1157, which doesn’t
look like much, but factors as 13 ·89; both are Fibonacci numbers. A check for r ≤ 30
yields nothing else of interest, except that 25 divides ar for r = 12, 13, 14, 24, 25, 26, 29,
which seems to be rather frequently. A few interesting factorizations are:

(144)
a12 = 26 · 13 · 167, a13 = 25 · 52 · 11 · 29,

a14 = 26 · 11 · 312, a19 = 24 · 34 · 112 · 1579.

(If 1579 sounds familiar, it may be that F17 = 1597. D-oh.)
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1. The Brocot array

The Brocot array, which goes back to 1861, is historically at least as prominent as
the Stern sequence. It can be construed as a double diatomic array. The basic idea
was discussed at the beginning of these notes: if a

b
and c

d
are consecutive in the r-th

row, then the mediant, a+c
b+d

, is inserted beween them in the r + 1-st row. The full

array starts with (0
1
, 1

0
):

(1)

0

1

1

0
0

1

1

1

1

0
0

1

1

2

1

1

2

1

1

0
0

1

1

3

1

2

2

3

1

1

3

2

2

1

3

1

1

0
· · ·

It is clear, using the earlier notation, that the r-th row (starting with r = 0) has 2r

elements, and that the k-th element (starting with k = 0) is

(2)
Z(r, k; 0, 1)

Z(r, k; 0, 1)
=

s(k)

s(2r − k)
.

Considering the symmetry of the array and the dubiousness of “1
0
”, it is customary

to write only the first half of this picture, thus starting in effect with (0
1
, 1

1
), and call

it the Brocot array:

(3)

0

1

1

1
0

1

1

2

1

1
0

1

1

3

1

2

2

3

1

1
0

1

1

4

1

3

2

5

1

2

3

5

2

3

3

4

1

1
· · ·

1
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So, in the same labeling, the k-th entry in the r-th row is

(4)
Z(r, k; 0, 1)

Z(r, k; 1, 1)
=

s(k)

s(2r+1 − k)
=

s(k)

s(2r + k)
.

(This last expression is possible for 0 < k < 2r, because then (2r+1 − k)′ = 2r + k; it
is true for k = 0, 2r because s(2r) = s(2r+1).)

Lemma 1. The entries of the r-th row of the Brocot array are increasing.

Proof. We prove something more, that

(5)
s(k + 1)

s(2r + k + 1)
− s(k)

s(2r + k)
=

1

s(2r + k)s(2r + k + 1)
.

Indeed, this is true in the first row; 1
1
− 0

1
= 1

1
. Assuming it is true in the r-th row,

with entries a
b
, c

d
, we note that

(6)

a + c

b + d
− a

b
=

b(a + c) − a(b + d)

b(b + d)
=

bc − ad

b(b + d)
=

1

b(b + d)
,

c

d
− a + c

b + d
=

c(b + d) − d(a + c)

d(b + d)
=

bc − ad

d(b + d)
=

1

d(b + d)
.

Thus the result holds by induction. ¤

(We also note that s(k + 1)s(2r + k) − s(k)s(2r + k + 1) = 1, which suggests that
the next problem set will contain an examination of s(m)s(n + 1) − s(m + 1)s(m).)

This property can be used to show that every rational in [0, 1] appears in the Brocot
array, but we can also use Theorem 11 from last week: If k is odd, 2r0 < k < 2r0+1

and r ≥ r0 + 1, then

(7)
s(2r + k)

s(k)
=

s((
←−−−
2r + k)′)

s((
←−−−
2r + k)′ + 1)

.

Let’s work backwards. Suppose 0 < p

q
< 1 and suppose that the quotient in (7) is q

p
.

We already know that there exists a unique odd n so that s(n) = q and s(n+1) = p.
Suppose 2r < n < 2r+1, and write n = 2r + ℓ, so that n′ = 2r+1 − ℓ. We have

(8) n = (
←−−−
2r + k)′ ⇐⇒ 2r+1 − ℓ =

←−−−
2r + k ⇐⇒

←−−−−−
2r+1 − ℓ = 2r + k.

Thus, if we keep the same r, and define k by

(9) k = (
←−−−−−
2r+1 − ℓ) − 2r,

then we have

(10)
p

q
=

s(k)

s(2r + k)
=

s(n + 1)

s(n)
.

It is possible to derive a more explicit formula for k from this information, but it is
actually faster and more instructive to do it from scratch.
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The Minkowski ?-function is defined on [0, 1], but for now we define it on the entries
of the Brocot array by:

(11) ?

(

s(k)

s(2r + k)

)

:=
k

2r
.

We first note that ?(x) is well-defined, because s(2k) = s(k), s(2r+1+2k) = s(2r+k)
and 2k

2r+1 = k
2r . It is also strictly increasing on each row of the Brocot array, and so

on the rationals. It will be helpful to also consider the inverse function ?−1(x)

(12) ?−1

(

k

2r

)

=
s(k)

s(2r + k)
.

In order to develop the closed form, we consider the continued fractions of ?−1( k
2r )

for small values of r.

(13)

1

2
→ 1

21
;

1

3
→ 1

22
,

1

1 +
1

2

→ 3

22
;

1

4
→ 1

23
,

1

2 +
1

2

→ 3

23
,

1

1 +
1

1 +
1

2

→ 5

23
,

1

1 +
1

3

→ 7

23
.

There are several patterns implicit in this table, which we now prove. The first
lemma may well appear earlier in the notes.

Lemma 2. If 0 < k < 2r is odd, s(k) = p and s(2r +k) = q, then s(2r+1 +k) = p+q.

Proof. We have seen ad nauseum that s(2rn + k) is linear in r for r ≥ ⌈log2 k⌉, with
coefficient s(n)s(k). Just take n = 1. ¤

Lemma 3.

(14) ?

(

p

q

)

=
k

2r
=⇒ ?

(

p

p + q

)

=
k

2r+1
and ?

(

q

p + q

)

=
2r+1 − k

2r+1
.

Proof. We assume that s(k) = p and s(2r + k) = q. As noted above, s(2r+1 + k) =
p + q. Since 2r < 2r + k < 2r+1, (2r + k)′ = 2r+1 − k and s(2r+1 − k) = q; since
2r+1 < 2r+1 +k < 2r+2, (2r+1 +k)′ = 2r+2 −k and s(2r+2 −k) = p+ q. Thus, we have

(15)
s(k)

s(2r+1 + k)
=

p

p + q
,

s(2r+1 − k)

s(2r+1 + (2r+1 − k))
=

q

p + q
.

¤
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On taking x = p

q
and noting that ?(1

2
) = 1

2
, it follows by induction from this lemma

that for x ∈ (0, 1) ∩ Q,

(16) ?(x)+?(1 − x) = 1, ?

(

x

x + 1

)

=
?(x)

2
, ?

(

1

x + 1

)

= 1 − ?(x)

2
.

It is now convenient to introduce some notation. Let a = (a1, . . . , aw) ∈ N
w for some

w ≥ 1 and let

(17) [a] = [0, a1, . . . , aw] := 0 +
1

a1 +
1

· · · + 1

aw

.

We also define

(18) ‖a‖ =
w

∑

j=1

aj,

and observe that if ‖b‖ = r + 1, then either (b1, . . . , bw) = (1 + a1, . . . , aw) or
(b1, . . . , bw) = (1, a2, . . . , aw) , where ‖a‖ = r, depending whether or not a1 > 1.

Lemma 4.

(19) [0, a1, . . . , aw] =
p

q
=⇒ [0, 1+a1, . . . , aw] =

p

p + q
, [0, 1, a1, . . . , aw] =

q

p + q
.

Proof. Since

(20)
q

p
= a1 +

1

· · · + 1

aw

,

we have immediately that

(21) [0, 1 + a1, . . . , aw] =
1

1 +
q

p

, and [0, 1, a1, . . . , aw] =
1

1 +
p

q

.

¤

Theorem 5.

(22) ?([0, a1, . . . , aw]) =
1

2a1−1
− 1

2a1+a2−1
+ − · · · + (−1)w+1

2a1+a2+···+aw−1
.

Proof. We first observe that there is no ambiguity in the definition arising from

(23) [0, a1, . . . , aw−1, aw, 1] = [0, a1, . . . , aw−1, aw + 1],

inasmuch as

(24)
(−1)w+1

2a1+a2+···+aw−1
+

(−1)w+2

2a1+a2+···+aw+1−1
=

(−1)w+1

2a1+a2+···+aw+1−1
.
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To make the right-hand side look more familiar, observe that

(25)
1

2a1−1
− 1

2a1+a2−1
+ − · · · + (−1)w+1

2a1+a2+···+aw−1
=

k

2‖a‖−1

for some odd k. We induct on ‖a‖. The cases in which ‖a‖ ≤ 3 are [1], [2] = [1, 1],
[3] = [2, 1] and [1, 2] = [1, 1, 1]. Referring to the previous table, we do indeed have

(26)

?([1]) =
1

21−1
; ?([2]) =?

(

1

2

)

=
1

22−1
;

?([3]) =?

(

1

3

)

=
1

23−1
, ?([1, 2]) =?

(

2

3

)

=
1

21−1
− 1

21+2−1
=

3

4
.

Suppose ‖b‖ = r + 1. There are two cases. If b1 > 1, then b = (1 + a1, . . . , aw)
with ‖a‖ = r. Write [0, a1, . . . , aw] = p

q
and ?(p

q
) = k

2r . By Lemmas 3 and 4 and the

inductive hypothesis,

(27)

?([0, 1 + a1, . . . , aw]) = ?

(

p

p + q

)

=
k

2r+1
=

1

2
·
(

1

2a1−1
− 1

2a1+a2−1
+ − · · · + (−1)w+1

2a1+a2+···+aw−1

)

=
1

21+a1−1
− 1

21+a1+a2−1
+ − · · · + (−1)w+1

21+a1+a2+···+aw−1
.

If b1 = 1, then b = (1, a1, . . . , aw) with ‖a‖ = r. Using the same notation and
arguments as above,

(28)

?([0, 1, a1, . . . , aw]) =?

(

q

p + q

)

=
2r+1 − k

2r+1
= 1 − 1

2
· k

2r
=

1

21−1
− 1

2
·
(

1

2a1−1
− 1

2a1+a2−1
+ − · · · + (−1)w+1

2a1+a2+···+aw−1

)

=
1

21−1
− 1

21+a1−1
+ − · · · + (−1)w+2

21+a1+a2+···+aw−1
.

This completes the proof. ¤

It is worth noting that this proof essentially establishes the formula for ?−1, and
that it does not try to compute the continued fraction expansion of the mediant
from its component parts, which would have been the first, natural step. We could
have derived (32) from the previous formula for the Stern sequence, although the
appearance of n′ means that there would be cases depending on whether the initial
and terminal denominators are 1. (This case breakdown does not occur in the above
derivation, but see below.) One can also use this approach to derive a closed formula
for the Stern sequence, but it seems longer than what we did.

We can always specify that w is even. In this case, the binary expression of k
2r

might depends on whether a1 > 1 or not. If a1 > 1, then this expression contains
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a1 − 1 0’s, followed by a2 1’s, a3 0’s, ending up with aw 1’s. If a1 = 1, then we have
a2 1’s, a3 0’s, ending up with aw 1’s.

If a(r,1), . . . a(r,2r−1) are the continued fraction denominators which appear corre-

sponding to s(k)
s(2r+k)

for odd k on the r-th row, then ‖a(r,j)‖ = r + 1, and the corre-

sponding denominators on the (r +1)-st row are, first, the ones from the r-th row, in
order, with a1 incremented by one, and then, the ones from the r-th row, in reverse
order, with 1 appended to the left. Thus, for r ≤ 3, we have:

(29)

[1]

[2] [1, 1]

[3] [2, 1] [1, 1, 1] [1, 2]

[4] [3, 1] [2, 1, 1] [2, 2], [1, 1, 2], [1, 1, 1, 1], [1, 2, 1], [1, 3]

. . .

2. Some finite computations

It is worth noting that the computation of continued fractions with repeating de-
nominators is closely linked to linear recurrences. For example, suppose we consider
the continued fraction with n identical denominators equal to a.

(30) a +
1

a +
1

· · · + 1

a

=
pn(a, . . . , a)

pn−1(a, . . . , a)
.

Let xn(a) = pn(a, . . . , a). Then:

(31) x0(a) = 1, x1(a) = a, xn(a) = axn−1(a) + xn−2(a).

The characteristic equation and its roots are

(32) λ2 − aλ − 1 = 0 =⇒ λ+ =
a +

√
a2 + 4

2
, λ− =

a −
√

a2 + 4

2
.

We know that xn(a) = c1λ
n
+ + c2λ

n
−, and since x−1(a) = 0, at least consistently with

the initial conditions, it is not hard to show that

(33) xn(a) =
λn+1

+ − λn+1
−

λ+ − λ−

=
λn+1

+ − λn+1
−√

a2 + 4
.

This reminds one that xn(1) = Fn+1. If a ∈ N, then λ+ > 1 and λ+λ− = −1 imply
that λm

− → 0 as m → ∞ so that as n → ∞,

(34) xn(a) = a +
1

a +
1

· · · + 1

a

=
xn(a)

xn−1(a)
→ λ+ =

a +
√

a2 + 4

2
.



STERN NOTES, CHAPTER 5 (VERSION 1) 7

Inasmuch as

(35) xn(a) = a +
1

xn−1(a)
,

if we knew a priori that lim xn(a) = θ, for some θ, we would have θ = a + 1
θ
, which

implies that θ2 − aθ − 1 = 0. This is true, as part of a more general calculation in
the next section.

In terms of the Minkowski ?-function, we have

(36)

?

(

xn−1(a)

xn(a)

)

=?([0, a, . . . , a]) =
1

2a−1
− 1

22a−1
+ − · · · + (−1)n+1

2na−1

=
1

2a + 1
· 2na − (−1)n

2na−1
=

2

2a + 1
+

(−1)n+1

(2a + 1)2na−1
.

For example, taking a = 1, we have

(37) ?

(

Fn

Fn+1

)

=
2

3
+

(−1)n+1

3 · 2n−1
.

These will be useful formulas when we look at ?′(x). It is also not too difficult to
compute explicitly

(38) a +
1

b +
1

a +
1

b + . . .

=
pn(a, b, a, b, . . . )

pn−1(b, a, b, a, . . . )
.

We consider the numerator first, defining yn(a, b) by:

(39)
y0(a, b) = 1, y1(a, b) = a,

y2n(a, b) = by2n−1(a, b) + y2n−2(a, b), y2n+1(a, b) = ay2n(a, b) + y2n−1(a, b).

This doesn’t look very promising, but if we suppress the argument for brevity, we
can note that

(40)

y2n = y2n,

y2n+1 = ay2n + y2n−1,

y2n+2 = by2n+1 + y2n = (ab + 1)y2n + by2n−1,

y2n+3 = ay2n+2 + y2n+1 = (a2b + 2a)y2n + (ab + 1)y2n−1,

y2n+4 = by2n+3 + y2n+2 = (a2b2 + 3ab + 1)y2n + (ab2 + 2b)y2n−1.

This looks even less promising; miraculously though,

(41) y2n+4 = (ab + 2)y2n+2 − y2n,
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and since this equation is symmetric in {a, b}, it would also have applied if we had
started at y2n+1, with a and b reversed. Therefore, we can say that for r ≥ 4,

(42) yr = (ab + 2)yr−2 − yr−4

and in this way obtain explicit formulas. It is not accidental that this might be
helpful in some problems on the second homework. Finally, if the limit in (38) is θ,
then it is reasonable to expect that

(43) θ = a +
1

b + 1
θ

=⇒ bθ2 − abθ − a = 0,

and θ would be the positive root of this quadratic. (If a = b, this reduces to the
previous equation, as it should.)

3. Biting the bullet

We would like to extend the definition of ?(x) to the entire interval [0, 1], which
means we will have to consider infinite continued fractions. This means that we really
should more standard terminology. We shall say that

(44) [x0, x1, . . . xn] := x0 +
1

x1 +
1

x2 +
1

· · · + 1

xn

,

under the convention that xi ∈ Z, with xi ≥ 1 for i ≥ 1. We already know that

(45) [x0, x1, . . . xn] =
pn+1(x0, . . . , xn)

pn(x1, . . . , xn)
.

We should have said explicitly, but haven’t yet, that we can also write

(46) x0 +
1

x1 +
1

x2 +
1

· · · + 1

xn

= x0 +
1

x1 +
1

· · · + 1

xk +
1

[xk+1, . . . , xn]

for any k, 0 < k < n, with the acknowledgement that the last “denominator” is not
an integer.

Lemma 6. If xi ≥ 1, then pn(x1, . . . , xn) ≥ Fn+1.

Proof. Since pn is a polynomial with non-negative coefficients, we can only decrease
it by replacing each xi with 1: pn(x1, . . . , xn) ≥ pn(1n) = Fn+1. ¤

Lemma 7. Let integers xi be given as above and let ξn = [x0, x1, . . . xn]. Then (ξn)
is a convergent sequence.
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Proof. For n ≥ 2, by the very important Theorem 9 (Notes IV),

(47)

ξn − ξn−1 =
pn+1(x0, . . . , xn)

pn(x1, . . . , xn)
− pn(x0, . . . , xn−1)

pn−1(x1, . . . , xn−1)

=
(−1)n+1

pn−1(x1, . . . , xn−1)pn(x1, . . . , xn)
.

In view of the last lemma, this implies that for n ≥ 2,

(48) |ξn − ξn−1| ≤
1

Fn−1Fn

≤ 1

2n−1
,

the last inequality coming from an easy induction (φ2 = 1 + φ ≈ 2.618 > 2.) It
follows that (ξn) is Cauchy, and hence is convergent. ¤

We have already discussed the continued fraction representations of rational num-
bers. We now talk about irrationals. Given real t /∈ Q, define

(49) G(t) :=
1

t − ⌊t⌋ .

Since t /∈ Q, t > ⌊t⌋, so that G(t) ∈ (1,∞) is well-defined, and since t = ⌊t⌋ + 1
G(t)

,

we see that G(t) /∈ Q as well. We also see that

(50) t = ⌊t⌋ +
1

G(t)
= ⌊t⌋ +

1

⌊G(t)⌋ +
1

G(G(t))

, etc.

Let Gn(t) denote the n-th iterate of G (G1 = G, Gn = G ◦ Gn−1) and let xn =
xn(t) := ⌊Gn(t)⌋. Then the preceding discussion shows the existence of a family of
exact formulas:

(51) t = x0(t) +
1

x1(t) +
1

· · · + . . .

xn−1(t) +
1

Gn(t)

.

Again, to be precise, keep in mind that Gn(t) is not an integer, but there should be
no confusion. We need some short lemmas.

Lemma 8. The function (−1)n[x0, x1, . . . , xn] is increasing in real xn.

Proof. Clearly, x0 is increasing in x0 and x0 + 1
x1

is decreasing in x1. Since

(52) [x0, . . . , xn] = x0 +
1

[x1, . . . , xn]
,

the result is immediate by induction. ¤
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Lemma 9. Provided xj ≥ 1 for all j, we have

(53) [x0, . . . , x2k] < [x0, . . . , x2k+2] < [x0, . . . , x2k+3] < [x0, . . . , x2k+1].

Proof. We have

(54)
[x0, . . . , x2k] < [x0, . . . , x2k + [x2k+1, . . . , x2k+r]

−1] = [x0, . . . , x2k+r],

[x0, . . . , x2k+1] > [x0, . . . , x2k+1 + [x2k+2, . . . , x2k+1+r]
−1] = [x0, . . . , x2k+1+r].

¤

We now prove the existence of infinite continued fractions.

Theorem 10. If t /∈ Q, then

(55) t = lim
n→∞

[x0(t), . . . , xn(t)].

Proof. Let ξn = ξn(t) := [x0(t), . . . , xn(t)], then

(56)

t − ξn

= x0 +
1

x1 +
1

· · · + . . .

xn−1 +
1

gn(t)

− x0 +
1

x1 +
1

· · · + . . .

xn−1 +
1

xn

.

Since xn < gn(t) < 1 + xn, it follows from monotonicity that

(57)

|t − ξn| <
∣

∣[x0, . . . , xn] − [x0, . . . , 1 + xn]
∣

∣

=

∣

∣

∣

∣

pn+1(x0, . . . , xn)

pn(x1, . . . , xn)
− pn+1(x0, . . . , 1 + xn)

pn(x1, . . . , 1 + xn)

∣

∣

∣

∣

.

Let us write a = pn(x0, . . . , xn−1), b = pn−1(x0, . . . , xn−2), c = pn−1(x1, · · · , xn−1)
and d = pn−2(x1, · · · , xn−2). As previously noted, |bc − ad| = 1. so this inequality
becomes

(58)

|t − ξn| <

∣

∣

∣

∣

xna + b

xnc + d
− (1 + xn)a + b

(1 + xn)c + d

∣

∣

∣

∣

=
|ad − bc|

(xnc + d)((1 + xn)c + d)
<

1

F 2
n

.

It follows that ξn → t and, indeed, that

(59) ξ0(t) < ξ2(t) < ξ4(t) · · · < t < · · · < ξ3(t) < ξ1(t).

¤

It is customary to say that the ξn(t)’s are the convergents of t.

Theorem 11. The continued fraction representation of an irrational number is unique
and infinite; conversely, every infinite continued fraction represents an irrational.
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Proof. Suppose t = [x0, x1, . . . ] = [y0, y1, . . . ] with xj, yj ∈ Z, xi, yi ≥ 1 for i ≥ 1. We
prove by induction that xj = yj. Indeed, since

(60) x0 < [x0, x1, . . . ] < 1 + x0, y0 < [y0, y1, . . . ] < 1 + y0,

we have x0 = y0 = m0. But now,

(61)
1

t − m0

= [x1, x2, . . . ] = [y1, y2, . . . ],

and we may repeat the argument. Suppose on the other hand that u = [x0, x1, . . . ] =
[y0, y1, . . . , yn]. Repeating the previous argument n times leads us to [xn, xn+1, . . . ] =
[yn], and xn < [xn, xn+1, . . . ] < 1 + xn is not an integer, a contradiction. ¤

We now return to some topics touched on in the earlier notes. An infinite continued
fraction is purely periodic of period d ≥ 1 if all its denominators are repeating blocks
of length d:

(62) [x0, . . . , xd−1] := [x0, . . . , xd−1, x0, . . . , xd−1, . . . ].

Let θk = θk(x0, . . . , xd−1) denote the finite continued fraction with kd denominators,
comprising k complete cycles of the pattern (x0, . . . , xd−1), or, more formally, θ1 =
[x0, x1, . . . .xd−1] and

(63) θk = x0 +
1

x1 +
1

· · · + . . .

xd−1 +
1

θk−1

.

If d = 1 and x0 = a, we have the familiar

(64) θk = a +
1

θk−1

=
xk(a)

xk−1(a)
,

and if d ≥ 2,

(65) θk =
pd+1(x0, . . . , xd−1, θk−1)

pd(x1, . . . , xd−1, θk−1)
=

θk−1pd(x0, . . . , xd−1) + pd−1(x0, . . . , xd−2)

θk−1pd−1(x1, . . . , xd−1) + pd−2(x1, . . . , xd−2)
.

If d = 1, this is consistent with p0 = 1, p−1 = 0, so we won’t distinguish that case.
Observe that (θk) is the subsequence of the kd-th entries in a convergent sequence

and so is also convergent, to, say, θ = θ(x0,...,xd−1). By continuity of polynomials,

(66) θ =
pd(x0, . . . , xd−1) · θ + pd−1(x0, . . . , xd−2)

pd−1(x1, . . . , xd−1) · θ + pd−2(x1, . . . , xd−2)
:=

Axθ + Bx

Cxθ + Dx

,

and so θ is a root of the quadratic:

(67) CxT
2 + (Dx − Ax)T − Bx.
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If x0 ≥ 1, then Bx > 0, so that there are two roots, one positive and one negative.
Clearly, θ > 0. Thus, every purely periodic continued fraction is a quadratic irra-
tional; θ ∈ Q(

√

(D − A)2 + 4BC). The uniqueness of continued fractions rules out
the possibility that θ ∈ Q.

Example. Suppose d = 1, so that

(68) θk ==
xk(a)

xk−1(a)
.

Plugging into the previous expression with x = (a), we have Ax = a, Bx = Cx =
1, Dx = 0, and the quadratic above is T 2 − aT − 1, as we have already seen. If d = 2,
then A = ab + 1, B = b, C = a, D = 1, and we get the quadratic seen in (43).

An infinite continued fraction is periodic if it is periodic after an initial string. We
write

(69) [y0, . . . , ye, x0, . . . , xd−1] := [y0, . . . , ye, x0, . . . , xd−1, x0, . . . , xd−1, . . . ].

If θ = [x0, . . . , xd−1] as before, and ψk denotes the continued fraction with the initial
string, followed by k repeated blocks, then as before

(70) ψk =
pe+1(y0, . . . , ye−1, θk)

pe(y1, . . . , ye−1, θk)
=

θkpe(y0, . . . , yd−1) + pe−1(y0, . . . , ye−2)

θkpe−1(y1, . . . , ye−1) + pe−2(e1, . . . , ed−2)
.

If e = 1, then we simply define

(71) [y0, x0, . . . , xd−1] = y0 +
1

θ

In any event, the convergence of continued fractions implies that (ψk) is convergent,
to ψ, say, and the convergence of (θk) implies

(72) ψ =
θpe(y0, . . . , yd−1) + pe−1(y0, . . . , ye−2)

θpe−1(y1, . . . , ye−1) + pe−2(e1, . . . , ed−2)
.

Since each of the continuants is an integer, we see that so ψ ∈ Q(
√

(D − A)2 + 4BC)
as well. Remarkably enough, the converse is true:

Theorem 12. If t = a + b
√

d ∈ Q(
√

d) is irrational, then the continued fraction
expansion of t is periodic.

This will be proved in the next section.

4. Lagrange’s Theorem

Lagrange’s Theorem is the result alluded to at the end of the last section: if u is a
quadratic irrational, then the continued fraction expansion of u is periodic. The first
thing we need to do is write quadratic irrationals in a peculiar form.
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Lemma 13. Suppose u ∈ Q(
√

n) \Q, where n ∈ N is not a square. Then there exist
(non-unique) integers m, d, q so that

(73) u =
m +

√
d

q
,

where m, d, q ∈ Z, q 6= 0, d > 0 is not a square and so that q | d − m2.

Proof. By hypothesis, we have u = α + β
√

n, with α, β ∈ Q and β 6= 0. After taking
a common denominator, there exist integers cj, with c2, c3 6= 0 so that

(74) u =
c1 + c2

√
n

c3

=
−c1 + −c2

√
n

−c3

.

We may thus assume without loss of generality that c2 > 0 and so that

(75) u =
c1 +

√

nc2
2

c3

=
c1|c3| +

√

nc2
2c

2
3

c3|c3|
.

If we let m = c1|c3|, d = nc2
2c

2
3 and q = c3|c3|, then m, d, q ∈ Z, q 6= 0, d > 0 is not a

square and

(76) d − m2 = c2
3(nc2

2 − c1)
2 = ±q(nc2

2 − c1)
2.

We remark that this representation is not unique: if r ∈ N, then another valid
representation will hold under the substitution (m, q, d) → (rm, rq, r2d). ¤

Theorem 14 (Lagrange’s Theorem). A quadratic irrational u has a periodic contin-
ued fraction.

Proof. By Lemma 1, we may write

(77) u =
m +

√
d

q
= [a0, a1, . . . ].

Recall from the last section that

(78) ξn(u) =
pn+1(a0, . . . , an)

pn(a1, . . . , an)
:=

pn+1

qn+1

→ u.

(Note that where pn+1, qn+1 ∈ N.) Also, there is an exact expression

(79) u = [a0, . . . , an−1, Gn(u)] =
pn+1(a0, . . . , an−1, Gn(u))

pn(a1, . . . , an−1, Gn(u))
=

Gn(u)pn + pn−1

Gn(u)qn + qn−1

.

We claim that we can always write

(80) Gn(u) =
mn +

√
d

qn

,



14 BRUCE REZNICK, UIUC

where mn, qn ∈ Z, qn 6= 0 and qn | d − m2
n. This is certainly true for n = 0 by

hypothesis, taking m0 = m and q0 = q, as u = Gn(u). Supposing the claim holds for
n, let an = xn(u) = ⌊Gn(u)⌋. Then we have

(81)

Gn+1(u) =
1

Gn(u) − an

=
qn

mn − anqn +
√

d

=
qn

mn − anqn +
√

d
· −(mn − anqn) +

√
d

−(mn − anqn) +
√

d

=
−(mn − anqn) +

√
d

(d − (mn − anqn)2)/qn

.

It is clear that mn+1 := −(mn − anqn) ∈ Z. If qn+1 is the last denominator above,
then

(82) qnqn+1 = d − m2
n+1 = d − (mn − anqn)2 = (d − m2

n) + qn(2anmn − a2
nqn).

Since qn | d − m2
n, qn+1 ∈ Z; further, qn+1 divides d − m2

n+1, as required, completing
the proof of the claim.

We can solve for Gn(u) in terms of u, using (7):

(83) Gn(u) = −pn−1 − uqn−1

pn − uqn

= − qn

qn−1

· ξn−2(u) − u

ξn−1(u) − u
.

We now invoke some algebraic number theory: conjugate is

(84) ū =
m −

√
d

q
.

Take the conjugate of both sides in (11), observing that pi, qi ∈ Z (so ξi(u) ∈ Q), and

keeping alert to the fact that, in general Gn(u) 6= Gn(ū). Then

(85) Gn(u) = − qn

qn−1

· ξn−2(u) − ū

ξn−1(u) − ū
.

Since ξn(u) → u and since u 6= ū,

(86)
ξn−2(u) − ū

ξn−1(u) − ū
→ u − ū

u − ū
= 1.

Because qn, qn−1 > 0, we may conclude that there exists N so that for n ≥ N ,

(87) Gn(u) =
mn −

√
d

qn

< 0.

Since Gn(u) ≥ 1 for n ≥ 1 by definition, we have

(88) Gn(u) − Gn(u) =
2
√

d

qn

> 0

for n ≥ N , hence qn > 0 for n ≥ N . But now recall from (10) that

(89) qnqn+1 + m2
n+1 = d =⇒ qn, m2

n+1 < d.
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This implies that there are only finitely many possibilities for (qn, mn) for n ≥ N
and so there exists M ≥ N, r > 0 so that (qM , mM) = (qM+r, mM+r). It follows that
GM(u) = GM+r(u), and so, for n ≥ M , Gn(u) = Gn+r(u), implying that an = an+r.
That is, the continued fraction expression for u is periodic with period r. ¤

Example. Let

(90) u = G0(u) =
1 +

√
2

3
=

3 +
√

18

9
≈ .805.

Then a0 = 0 and

(91) G1(u) =
9

3 +
√

18
= −3 +

√
18 ≈ 1.242.

We see that a1 = 1 and

(92) G2(u) =
1

−3 +
√

18 − 1
=

1

−4 +
√

18
=

4 +
√

18

2
≈ 4.121.

Therefore, a2 = 4 and

(93) G3(u) =
1

4+
√

18
2

− 4
=

2

−4 +
√

18
= 4 +

√
18 ≈ 8.243.

We’re almost done, because a3 = 8 and

(94) G4(u) =
1

4 +
√

18 − 8
=

1

−4 +
√

18
= G2(u).

It follows that u = [0, 1, 4, 8]. We can verify this by our earlier calculation. We have
previously shown that, if θ = [4, 8], then

(95) 8θ2 − 32θ − 4 = 0 =⇒ θ =
4 + 3

√
2

2
.

It follows that

(96) x = 0 +
1

1 +
1

4 +
1

8 +
1

. . .

=
1

1 +
1

θ

=
1

1 +
2

4 + 3
√

2

=
4 + 3

√
2

6 + 3
√

2
= u.

Just for completeness, we observe that

(97)
1 +

√
2

3
= 0 +

1

1 +
1

4 +
1

4 +
√

18

=⇒ 1 −
√

2

3
= 0 +

1

1 +
1

4 +
1

4 −
√

18

.
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The actual continued fraction representation for ū is [−1, 1, 6, 4, 8], a formula whose
resemblance to the earlier one might make want you to explore more deeply in the
subject of continued fractions.

We also state a pretty neat theorem that we will not use directly. A proof can be
found in your favorite high-quality number theory textbook:

Theorem 15. The real quadratic irrational u has a purely periodic continued fraction
expansion if and only if u > 1 and −1 < ū < 0.

(Note that for θ = [4, 8], θ ≈ 4.121 and θ̄ ≈ −.121.) More generally, for θ = [a, b],
θ and θ̄ are the positive and negative roots of the equation

(98) pa,b(T ) = bT 2 − abT − a = 0,

and pa,b(−1) = b + a(b − 1) > 0 > −a = pa,b(0), so θ̄ ∈ (−1, 0), and pa,b(1) =
−b(a − 1) − a < 0, so θ > 1. All bets are off if you want to play with periodic
continued fractions whose denominators are not in N.

Corollary 16. If m ∈ N is not a perfect square and a0 = ⌊√m⌋, then
√

m =
[a0, a1, . . . , ad−1, 2a0].

Proof. Observe that a2
0 + 1 ≤ m ≤ (a0 + 1)2 − 1. If we let u = a0 +

√
m, then

u ≥ 2a0 > 1 and ū = a0 −
√

m. Thus

(99) 0 > a0 −
√

a2
0 + 1 ≥ ū > a0 − (a0 + 1) = −1,

verifying the hypotheses of Theorem 3. ¤

In a few cases, the non-periodic continued fraction representations of non-quadratic
irrationals is known. Here is a very brief sampling:

(100)

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . . ],

e − 1

e + 1
= [0, 2, 6, 10, 14, 18, 22, 26, 30, 34 . . . ],

tan(1) = [1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, . . . ],

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, . . . ].

If you can find the pattern for π, wave to me from the stage as you pick up your
Fields Medal.

5. A little analysis

We will come across the same situation more than once, so I’d like to formalize it.

Theorem 17. Suppose X is a dense subset of the real interval [a, b], Y is a dense
subset of the real interval [c, d] and f is a strictly increasing bijection of X onto Y .
Then f extends to a unique continuous function F from [a, b] to [c, d]; this function
F is also strictly increasing.
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Proof. We first remark that if a ∈ X, then f(a) = c. This is because f(X) = Y ⊆
[f(a), d] and Y is dense in [c, d]. A similar argument shows that if b ∈ X, then
f(b) = d.

We now define F (x) for u ∈ [a, b]. If a /∈ X, F (a) = c and if b /∈ X, F (b) = d. If
u ∈ (a, b),

(101) F−(u) = sup{f(x) : x ∈ X ∩ [a, u]}; F+(u) = inf{f(x) : x ∈ X ∩ [u, b]}.
The sup and inf are finite, because c ≤ f(a), f(a′) ≤ d for a, a′ ∈ X. If x ∈ X,
then clearly F−(x) = F+(x) = f(x), so F extends f . Suppose u /∈ X. Observe
that if x0 < u < x1 for xi ∈ X, then f(x0) < f(x1), hence f(x0) ≤ F+(u) and
F−(u) ≤ f(x1). Taking sups or infs, we see that F−(u) ≤ F+(u). In fact, we show
that F−(u) = F+(u). Suppose not, then by the denseness of Y = f(X), there exists
z ∈ X so that f(z) is in the open interval (F−(u), F+(u)). But f(z) > F−(x) so x > u
and f(z) < F+(x) so x < u, a contradiction.

We now define

(102) F (u) = F−(u) = F+(u).

We must prove that F is strictly increasing, continuous and unique with these con-
ditions. First observe that F is non-decreasing, because a ≤ u < v ≤ b implies
that

(103) {f(x) : x ∈ X ∩ [a, u]} ⊆ {f(x) : x ∈ X ∩ [a, v]}.
This set inclusion implies that F+(u) ≤ F+(v). Since X is dense in [a, b], there exist
xi ∈ X so that u < x0 < u+v

2
< x1 < v. Since f is strictly increasing, it follows that

(104) F (u) ≤ F (x0) = f(x0) < f(x1) = F (x1) ≤ F (v),

so F is strictly increasing.
The continuity of F on (a, b) can be proved from the definition. Suppose that

F (u) = y and let ǫ > 0 be small enough that (y − ǫ, y + ǫ) ⊆ (c, d). As before, there
exist xi ∈ X so that y− ǫ < f(x0) < y < f(x1) < y + ǫ. Since F is strictly increasing,
x0 < u < x1. Let δ = min{u−x0, x1−u}. Then |u−v| < δ implies that x0 < v < x1,
so f(x0) < F (v) < f(x1), and so |F (u) − F (v)| < ǫ.

Finally, suppose G also extends F and is continuous, and suppose F (u) 6= G(u)
for some u ∈ [a, b], say F (u) > G(u). Then by continuity, F (x) > G(x) on some
neighborhood of u intersected with [a, b]. But this neighborhood will contain x ∈ X,
and F (x) = G(x) by hypothesis, a final contradiction. ¤

Theorem 18. The Minkowski ?-function extends to a strictly increasing function on
[0, 1] defined on irrational arguments by

(105) ?([0, a0, a1, a2, . . . ]) =
∞

∑

m=1

(−1)m−1

2a1+···+am−1
.

This function maps the rationals in [0, 1] to the dyadic rationals in [0, 1] and the
quadratic irrationals in [0, 1] to the non-dyadic rationals in [0, 1].
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Proof. First observe that since ai > 1, the series above converges by the ratio test.
Let [a, b] = [c, d] = [0, 1] in Theorem 5, let X = Q ∩ [0, 1] and Y = Q2 ∩ [0, 1],
where Q2 denotes the dyadic rationals. Then X and Y are both dense on [0, 1] and
? has already been shown to be strictly increasing on X. If t = [0, a0, a1, . . . ], then
t = lim ξn(t) and ?(ξn(t)) is the n-th partial sum of the series, and since ? extends to
a continuous function on [0, 1], which we shall also call ?,

(106) ?(t) = lim
n→∞

ξn(t) = lim
n→∞

n
∑

m=1

(−1)m−1

2a1+···+am−1
=

∞
∑

m=1

(−1)m−1

2a1+···+am−1
.

To show periodicity, we first remark that

(107) [0, b0, . . . , be−1, a0, . . . , ad−1] = [0, b0, . . . , be−1, a0, . . . , ad−1, a0, . . . , ad−1],

so we may assume that any periodic continued fraction has even period. If u is a
quadratic irrational and D =

∑

aj is the sum of the denominators in the period and
2s is the length of the period, then there exists N = 2sn0 so that for m ≥ N , if
m = (2s)n + r, 0 ≤ r < 2s, then

(108) a1 + · · · + am − 1 = Tr + (n − n0)D

for some integers Tr, determined by the non-purely periodic part and a0, . . . , ar. It
follows that

(109)
∞

∑

m=1

(−1)m−1

2a1+···+am−1
=

2sn0−1
∑

m=1

(−1)m−1

2a1+···+am−1
+

2s−1
∑

r=0

∞
∑

k=0

(−1)r

2Tr+kD
.

Since

(110)
∞

∑

k=0

1

2Tr+kD
=

1

2Tr
· 2D

2D − 1
,

?(t) is a finite sum of dyadic rationals and rationals, and so is rational.
Conversely, suppose v ∈ (0, 1) ∩ Q is not dyadic. We may write

(111) v =
p

q
=

1

2n

p

q′
=

1

2n

(

c +
p′

q′

)

,

where q′ is odd, 0 ≤ c < 2n ∈ N and 0 < p′ < q′. Since q′ is odd, there exists r so
that 2r ≡ 1 (mod q′), and so

(112) v =
m

2n
+

t

2r − 1
.

As before, we can write both t and c in the form

(113) 2b1 − 2b2 + − · · · + 2b2k−1 − 2b2k

with b1 > b2 > . . . b2k, and since

(114)
1

2r − 1
=

∞
∑

j=1

1

2rj
,
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we obtain a representation

(115) v =
∞

∑

m=1

(−1)m−1

2a1+···+am−1

in which the ak’s are eventually periodic. ¤

Corollary 19. If u ∈ [0, 1], then

(116)

?(u)+?(1 − u) = 1, ?

(

u

u + 1

)

=
?(u)

2
, ?

(

1

u + 1

)

= 1 − ?(u)

2

?

(

v

1 − kv

)

= 2k·?(v), 0 ≤ v ≤ 1

k + 1
.

Proof. The equations on the top row hold when u = x is rational. If u /∈ Q, write
u = lim xn with xn → u. Since ? is continuous and φj(t) = 1 − t, t

t+1
, 1

t+1
are

continuous, simply replace u with xn and take the limit.
For the bottom, first observe that if 0 ≤ v ≤ 1

2
, then v = u

u+1
for some u ∈ [0, 1],

and u = v
1−v

. If T (z) = z
z+1

, then the k-th iterate is Tk(z) = z
kz+1

, so that

(117) ?

(

u

ku + 1

)

=
?(u)

2k
=⇒ ?

(

v

1 − kv

)

= 2k·?(v),

provided v
1−kv

∈ [0, 1]; that is, v ∈ [0, 1
k+1

]. ¤

Example. We have seen above that 1+
√

2
3

= [0, 1, 4, 8]. It follows that

(118)

?

(

1 +
√

2

3

)

=
1

21−1
− 1

21+4−1
+

1

21+4+8−1
− 1

21+4+8+4−1
+ − . . .

= 1 − 1

24
+

1

212
− 1

216
=

(

1 − 1

24

)

· 212

212 − 1
=

15 · 4096

16 · 4095
=

256

273
.

Example. We have already seen in Notes, V(37), that

(119) ?

(

Fn

Fn+1

)

=
2

3
+

(−1)n+1

3 · 2n−1
.

By taking the limit, we see that

(120) ?

(√
5 − 1

2

)

=
2

3
.

More generally, since

(121) θa =
a +

√
a2 + 4

2
= [a],
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by taking the limit in Notes, V(36) we see that for a ∈ N,

(122) ?

(√
4 + a2 − a

2

)

=
2

2a + 1
.

It is useful to note a shortcut. define γa so that

(123) ?(γa) =
1

2a + 1
=⇒ ?

(

γa

1 − aγa

)

=
2a

2a + 1
=?(1 − γa).

It follows that γa is a root of the equation

(124)
X

1 − aX
= 1 − X =⇒ aX2 − (a + 2)X + 1 = 0 =⇒ γa =

a + 2 −
√

a2 + 4

2a
.

(Since the polynomial has a root between 1 and 2, γa must be the smaller root.) Since

(125)
γa

1 − γa

= θa,

this is consistent with the earlier calculation.

Remark. We remark that there is an implicit algorithm at work here. If p

q
is a

non-dyadic rational, keep doubling until you get past 1
2
. Then take 1 − x to get

below 1
2
, keep doubling again, etc. These fractions all have denominator q and lie in

(0, 1), hence eventually you get repetition. By solving the resulting equation, you can
compute ?−1(p

q
) without having to compute dyadic expansions and continued fractions

explicitly. (This information is implicitly contained in the ordering of doubling and
folding back.) This ought to be a theorem. Later.

Example. A more complicated object is θa,b = [a, b]. We already know that

(126) θa,b =
ab +

√
a2b2 + 4ab

2b
=⇒ θ−1

a,b =
−ab +

√
a2b2 + 4ab

2a
,

The computation of ?(θa,b) is easy because the period has even length. We have
(127)

?

(

−ab +
√

a2b2 + 4ab

2a

)

=
∞

∑

j=0

(

1

2(j+1)a+jb−1
− 1

2(j+1)a+(j+1)b−1

)

=
2(2b − 1)

2a+b − 1
.

Example. It is a little-appreciated fact that every integer ≤ 10 can be written in the
form 2a(2b ± 1). It is also little-appreciated that the inverse to the ?-function is also
a continuous and strictly-increasing function. Based on the results on the previous
pages, we can compute ?−1(a

b
) for every proper fraction in (0, 1) with b ≤ 10. For

b = 2, 4, 8, see Notes V(13). In view of (33) and (36) above, we find immediately that

(128) ?

(

3 −
√

5

2

)

=
1

3
, ?

(

5 −
√

5

10

)

=
1

6
, ?

(

5 +
√

5

10

)

=
5

6
.
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Taking a = 2 in (38), we get

(129) ?(
√

2 − 1) =
2

5
=⇒ ?(2 −

√
2) =

3

5
, ?

(

2 −
√

2

2

)

=
1

5
, ?

(√
2

2

)

=
4

5
.

Working backwards from the right-hand-side of (55), with (a, b) = (2, 1) and (1, 2),
we see after some simplification that

(130) ?

(

−1 +
√

3

2

)

=
2

7
, ?

(

−1 +
√

3
)

=
6

7
.

More use of Corollary 7 implies that

(131) ?

(

3 −
√

3

2

)

=
5

7
, ?

(

2 −
√

3
)

=
1

7
, ?

(√
3

3

)

=
4

7
, ?

(

3 −
√

3

3

)

=
3

7
.

Here’s a preview from the next homework set: compute ?−1(a
b
) for reduced fractions

in (0, 1) with b = 9 and b = 10.
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6. Return to the first section

It turns out that it will be useful to have a proof of Theorem 3, and more.

Proof of Theorem 3. Suppose u = [a0, . . . , an−1]. By repeating the block if necessary,
we may assume that n ≥ 3. Then we’ve seen in the earlier notes that

(132)

u = a0 +
1

a1 +
1

· · · + 1

an−1 +
1

u

=
pn+1(a0, . . . , an−1, u)

pn(a1, . . . , an−1, u)

=
u · pn(a0, . . . , an−1) + pn−1(a0, . . . , an−2)

u · pn−1(a1, . . . , an−1) + pn−2(a1, . . . , an−2)
.

If, as before, we write this as

(133) u =
Au + B

Cu + D
,

then we’ve seen that u is a (positive) root of the quadratic

(134) f(T ) = CT 2 + (D − A)T − B =⇒ u =
A − D +

√

(D − A)2 + 4BC

2C
,

and the other root of f must be ū. We have u > a0 ≥ 1. Note that f(0) = −B < 0
and f(−1) = (A − B) + (C − D), and

(135)
A − B = pn(a0, . . . , an−1) − pn−1(a0, . . . , an−2)

= (an−1 − 1)pn−1(a0, . . . , an−2) + pn−2(a0, . . . , an−3) > 0.

Similarly, C − D = (an−1 − 1)pn−2(a1, . . . , an−2) + pn−3(a1, . . . , an−3) ≥ 0. Thus,
−1 < ū < 0. (Alternatively, one can show that uū = −B

C
∈ (−1, 0).)

The converse is somewhat harder. We suppose that u > 1 and ū ∈ (−1, 0). Since
u is a quadratic irrational, its continued fraction expansion is periodic. Thus there
exist n0, r so that Gn0

(u) = Gn0+r(u), and so that Gn(u) = Gn+r(u) for n ≥ n0.
Assume without loss of generality that n0 is minimal with this property. Our goal is
to show that n0 = 0.

To do this, we first wish to show that for all n ≥ 0, we have Gn(u) > 1 and

Gn(u) ∈ (−1, 0). The first is easy to establish, because, G0(u) = u > 1 by hypothesis,

and Gn(u) > 1 for n ≥ 1 by construction. For the second, again, Gn(u) = ū ∈ (−1, 0)
by hypothesis. We have

(136) Gn(u) = an +
1

Gn+1(u)
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and this implies that

(137) Gn(u) = an +
1

Gn+1(u)
=⇒ Gn+1(u) =

1

Gn(u) − an

.

By hypothesis, Gn(u) ∈ (−1, 0) and an ≥ 1, hence

(138) Gn(u) − an < −1 =⇒ Gn+1(u) =
1

Gn(u)
− an ∈ (−1, 0).

This completes the induction. Observe that we have now shown that

(139) −an − 1

Gn+1(u)
= −Gn(u) ∈ (0, 1),

and since an is an integer, this means that

(140) an =

⌊

− 1

Gn+1(u)

⌋

.

Suppose that Gn0
(u) = Gn0+r(u) and n0 ≥ 1. It follows from this last equation that

an0−1 = an0+r−1. But now, applying (64) with n = n0 − 1 and n = n0 + r − 1, we see
that Gn0−1(u) = Gn0+r−1(u), contradicting the minimality of n0. Thus, u is purely
periodic. ¤

The next result is interesting in its own right.

Theorem 20.

(141) u = [a0, . . . , an−1] =⇒ −ū−1 = [an−1, . . . , a0].

Proof. Keep the notation of the last theorem. Then u, ū are the roots of f(T ) = 0.
By the same reasoning, if v = [an−1, . . . , a0], then

(142) v =
v · pn(an−1, . . . , a0) + pn−1(an−1, . . . , a1)

v · pn−1(an−2, . . . , a0) + pn−2(an−2, . . . , a1)
.

But by the reversability of the arguments of continuants, this means that v and v̄ are
the roots of the equation

(143) g(T ) = BT 2 + (D − A)T − C = −T 2f(−T−1).

Thus {v, v̄} = {−u−1,−ū−1}. Since u, v > 1, ū, v̄ ∈ (−1, 0), it follows that v =
−ū−1. ¤

We now improve Corollary 4.

Corollary 21. If m ∈ N is not a perfect square, and a0 = ⌊√m⌋, then
√

m =
[a0, a1, . . . , ad−1, 2a0], where ak = ad−k for 1 ≤ k ≤ d − 1.
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Proof. We have already proved that u = a0 +
√

m is purely periodic, and since
⌊u⌋ = 2a0, we have

(144) u = [2a0, a1, . . . , ad−1]

for some denominators aj. We now take away the first denominator and observe that

(145) u = 2a0 +
1

a1 +
1

· · · + 1

ad−1 +
1

2a0 +
1

. . .

= 2a0 +
1

[a1, . . . , ad−1, 2a0]
.

Thus

(146) w := [a1, . . . , ad−1, 2a0] =
1

u − 2a0

=
1√

m − a0

.

It follows from Theorem 8 that

(147)

v := [2a0, ad−1, . . . , a1] = −w̄−1 = − 1

1

−√
m − a0

= a0 +
√

m = [2a0, a1, . . . , ad−1] = u.

Since continued fractions are unique, we conclude that ak = ad−k for 1 ≤ k ≤
d − 1. ¤
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7. Bonus leftovers

This accidental section consists of a few items that should have been in section two.
The first is a definition of the Minkowski ?-function which is seemingly independent
of anything connected with the Stern sequence.

Corollary 22. The Minkowski ?-function is the unique function F satisfying the
following properties:

(1) F is continuous on [0, 1];
(2) F (0) = 0, F (1) = 1;
(3) F (x) + F (1 − x) = 1 for all x ∈ [0, 1];

(4) F ( x
x+1

) = F (x)
2

for all x ∈ [0, 1] .

Proof. Properties (2), (3) and (4) iterate to showing that F (x) =?(x) for any x ∈ Q,
and so by (1), F must be the unique continuous extension. ¤

Example. The approach in the last remark on p.8 is less useful than perhaps it seems.
What it amounts to is a way of quickly determining the repeating portion of the binary
representation of y = p

q
, and then translating that into finding ?−1(y). If q = 2vm for

odd m, then the number of steps is v plus the smallest k so that 2k ≡ ±1 (mod m).
Recall that if 2p < q, then

(148) ?

(

p

q

)

= y ⇐⇒ ?

(

q − p

q

)

= 1− y, ?

(

p

q − p

)

= 2y, ?

(

q − 2p

q − p

)

= 1− 2y.

We apply this repeatedly to one not-so-easy illustrative example. Suppose

(149) ?(x) =
13

44
⇐⇒ ?(1 − x) =

31

44
.

Since the first of these is less than 1
2
, we “use” it:

(150) ?

(

x

1 − x

)

=
13

22
⇐⇒ ?

(

1 − 2x

1 − x

)

=
9

22
.

Now 9
22

< 1
2
, so

(151) ?

(

1 − 2x

x

)

=
9

11
⇐⇒ ?

(

3x − 1

x

)

=
2

11
.

We can already see from this that x ∈ (1
3
, 1

2
). Here, 2

11
< 1

2
, so

(152) ?

(

3x − 1

1 − 2x

)

=
4

11
⇐⇒ ?

(

2 − 5x

1 − 2x

)

=
7

11
.

Repeating,

(153) ?

(

3x − 1

2 − 5x

)

=
8

11
⇐⇒ ?

(

3 − 8x

2 − 5x

)

=
3

11
.
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Don’t give up!

(154) ?

(

3 − 8x

3x − 1

)

=
6

11
⇐⇒ ?

(

11x − 4

3x − 1

)

=
5

11
.

We now know that x ∈ ( 4
11

, 3
8
). Almost there!

(155) ?

(

11x − 4

3 − 8x

)

=
10

11
⇐⇒ ?

(

7 − 19x

3 − 8x

)

=
1

11
.

(Thus, 4
11

= .3636.. < x < .3684.. = 7
19

.) Finally:

(156) ?

(

7 − 19x

11x − 4

)

=
2

11
⇐⇒ ?

(

30x − 11

11x − 4

)

=
9

11
.

At last, a match!

(157) ?

(

3x − 1

x

)

=?

(

7 − 19x

11x − 4

)

=
2

11
=⇒ 3x − 1

x
=

5 − 11x

7x − 3
.

This gives a quadratic, which is good:

(158)

(3x − 1)(7x − 3) = x(5 − 11x) =⇒ 52x2 − 30x + 4 = 0

=⇒ x =
15 +

√
17

52
≈ .36775, x =

15 −
√

17

52
≈ .20917.

There are two roots, but they imply that

(159)
3x − 1

x
=

±17 − 3

4
=⇒ ?

(±17 − 3

4

)

=
2

11
.

We must choose the “+” sign; it’s also the only one that is in the correct range
(otherwise the formulas above are not accurate.) We conclude that

(160) ?

(

15 +
√

17

52

)

=
13

44
.

Interestingly, it turns out that

(161) ?

(

15 −
√

17

52

)

=
3

44
.

To confirm these formulas, we make some Mathematica calculations:

(162)
15 +

√
17

52
= [0, 2, 1, 2, 1, 1, 3]

A calculation similar to that found in the proof of Theorem 6 shows that

(163)

13

44
=

1

4
· 52

44
=

1

4

(

1 +
2

11

)

=
1

4
+

1

4
· 186

1023

=
1

22
+

1

22
· 28 − 27 + 26 − 23 + 21

210 − 1
= [.010010111010]2 .
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These match up. It is worth noting as well that one obtains the following result from
a more careful examination of this algorithm. If q is odd and a ≡ ±2kb (mod q), then
?−1(a

q
) and ?−1( b

q
) belong to the same quadratic extension of Q. The smallest odd

number q for which there exist a, b not satisfying this condition is q = 17. It’s not
hard to show that

(164) ?

(

3 −
√

5

4

)

=
1

17
, ?

(

4 −
√

10

3

)

=
3

17
.

Finally, we sketch the proof of a theorem, which I have given a somewhat disparag-
ing name. It is quite striking but is really a trivial extension of what’s already known.
I don’t remember having seen it before but would not be surprised to learn it was
100 years old.

Theorem 23 (Low hanging fruit). Suppose

(165) ?(x) =
2p

q
.

Then p and q are both odd if and only if x is a quadratic irrational and x̄ < −1.

Proof. Let u = 1/x ∈ (1,∞). We have seen that u has a purely periodic continued
fraction if and only if ū ∈ (−1, 0), and xu = 1 implies x̄ū = 1, hence x̄ < −1. We
now want to show that ?(x) = 2p

q
with odd p, q if and only if u is purely periodic.

First suppose u = [a0, . . . , ad−1]. As remarked earlier, by repeating the period, we
may assume without loss of generality that d is even. Let

(166) Tj =

j
∑

i=0

ai, 0 ≤ j ≤ d − 1.

By the periodicity of the ai’s, if n = dk + j, 0 ≤ j ≤ d − 1, then

(167)
n

∑

i=0

ai =

dk+j
∑

i=0

ai = kTd−1 + Tj,

and from (33),

(168)

?(u) =
∞

∑

n=0

(−1)n

2a0+···+an−1
=

d−1
∑

j=0

(−1)j

2Tj−1

∞
∑

k=0

1

2kTd−1

=

(

d−1
∑

j=0

(−1)j

2Tj−1

)

(

2Td−1

2Td−1 − 1

)

.

The proof is complete upon the identification

(169) p =
d−1
∑

j=0

(−1)j2Td−1−Tj , q = 2Td−1 − 1.
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(Note that Td−1 > Tj for j < d − 1, hence p is odd.)
Conversely, suppose ?(x) = 2p

q
, where p and q are odd. Since q | 2T − 1 for some

T , we may write

(170)
2p

q
=

2m

2T − 1

for some odd m. We can now write

(171) m =
d−1
∑

j=0

(−1)j2T−Tj

where d is even and the Tj’s are strictly increasing, with T0 ≥ 1. Since m is odd,
Td−1 = T . The argument of the last paragraph reverses, and we find that x is purely
periodic. This proves that x̄ < −1, completing the proof. ¤

Remark. Checking against the examples on p.9, we see that for 1/3, 2/3, 1/6, 5/6,

(172)
−
√

5 − 1

2
< −1,

3 +
√

5

2
> 1,

5 ±
√

5

10
> 0.

In checking ?−1(a
b
) with b = 5, 7, we see easily that only 2

5
, 2

7
, 6

7
are the only ones fitting

the hypothesis of this theorem, and their images are the only ones whose conjugates
are < −1.

Moreover, we’ve seen that for θab = [a, b],

(173) ?(θ−1
a,b) =

2(2b − 1)

2a+b − 1
;

fortunately,

(174) θ−1
a,b =

−ab −
√

a2b2 + 4ab

2a
<

−2ab

2a
≤ −1.
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8. The differentiability of ?(x)

First, an important correction – the error was noted by Jason Benda after class.
I had made a mistake in an earlier draft and not completely replaced it in the final.
You should read (85) and (86) as

(175) ?

(

3x − 1

x

)

=?

(

7 − 19x

11x − 4

)

=
2

11
=⇒ 3x − 1

x
=

7 − 19x

11x − 4
.

(176) (3x − 1)(11x − 4) = x(7 − 19x) =⇒ 52x2 − 30x + 4 = 0.

Before talking about the differentiability of ?′(x), we need a more general consid-
eration. Let F denote the set of continuous, strictly increasing functions from [0, 1]
to itself. Observe that f ∈ F implies that the inverse f−1 ∈ F and that both ? and
¿ are in F . (Another nod to Jason for finding the way for me to write the inverse.)
As is well-known, if f ∈ F , then f ′ exists almost everywhere on [0, 1].

For f ∈ F , We define

(177)

D(f, 0) :=

{

x0 : lim
x→x0

f(x) − f(x0)

x − x0

= 0

}

,

D(f,∞) :=

{

x0 : lim
x→x0

f(x) − f(x0)

x − x0

= ∞
}

.

Obviously, D(f, 0) is the set of points at which f ′ = 0; but D(f,∞) is not just the
set of points at which f ′ does not exist. It is possible for the difference quotient to
oscillate; we are interested in the set where it goes to ∞. Inasmuch as

(178) x → x0 ⇐⇒ f(x) → f(x0), y → y0 ⇐⇒ f−1(y) → f−1(y0),

we have the immediate lemma.

Lemma 24. If f ∈ F , then

(179)
x0 ∈ D(f, 0) ⇐⇒ f(x0) ∈ D(f−1,∞);

x0 ∈ D(f,∞) ⇐⇒ f(x0) ∈ D(f−1, 0).

Proof. Simply observe that if y = f(x), then

(180)
f(x) − f(x0)

x − x0

=

(

f−1(y) − f−1(y0)

y − y0

)−1

.

¤

Because f ′ exists ae, we must have µ(D(f,∞)) = 0. However, it does not follow
that f(D(f,∞)) = D(f−1, 0) also has measure 0. This would imply by symmetry that
µ(D(f, 0)) = 0 as well. But this is false in general. (For example, the Cantor function
maps the Cantor set to [0, 1].) In fact, as Salem proves in his paper, µ(D(?, 0)) = 1.

Let us say that if vm ↑ x, um ↓ x and there exists λ > 0 so that x−vm+1 > λ(x−vm)
and um+1 − x > λ(um − x), then (um) and (vm) slowly approach x.
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Lemma 25. Suppose (um) and (vm) slowly approach x and suppose f ∈ F . Then

(181)

lim
m→∞

f(um) − f(x)

um − x
= lim

m→∞

f(vm) − f(x)

vm − x
= 0 =⇒ x ∈ D(f, 0);

lim
m→∞

f(um) − f(x)

um − x
= lim

m→∞

f(vm) − f(x)

vm − x
= ∞ =⇒ x ∈ D(f,∞).

Proof. Observe that if u > x is sufficiently close to x, then u ∈ (xm+1, xm) for some
m and, by the monotonicity of f ,

(182)

f(u) − f(x)

u − x
<

f(um) − f(x)

um+1 − x
<

1

λ
· f(um) − f(x)

um − x
,

f(u) − f(x)

u − x
>

f(um+1) − f(x)

um − x
> λ · f(um+1) − f(x)

um+1 − x
.

Similar inequalities apply if v < x. We see that if y is sufficiently close to x, then
the “slow” sequential limits to 0 or ∞ imply continuous limits. It is easy to give
counterexamples when the difference quotient is finite and non-zero, or when the
sequences don’t slowly approach x. The reverse implication always holds of course.

¤

Lemma 26. (i) If x0 ∈ D(?, 0), then 1 − x0,
x0

1+x0
∈ D(?, 0); if x0 ∈ D(?,∞), then

1 − x0,
x0

1+x0
∈ D(?,∞).

(ii) If x0 ∈ D(¿ , 0), then 1 − x0,
1
2
x0 ∈ D(¿ , 0); if x0 ∈ D(¿ ,∞), then 1 −

x0,
1
2
x0 ∈ D(¿ ,∞).

Proof. Suppose x → x0. Then 1 − x → 1 − x0 and

(183)

lim
x→x0

?(1 − x)−?(1 − x0)

(1 − x) − (1 − x0)
= lim

x→x0

(1−?(x)) − (1−?(x0))

(1 − x) − (1 − x0)

= lim
x→x0

?(x0)−?(x)

x0 − x
= lim

x→x0

?(x)−?(x0)

x − x0

.

Similarly, if x → x0, then x
1+x

→ x0

1+x0
(since x ∈ [0, 1]). Observe that

(184)

?

(

x

1 + x

)

−?

(

x0

1 + x0

)

=
?(x)−?(x0)

2
;

x

1 + x
− x0

1 + x0

=
(x − x0)

(1 + x)(1 + x0)
.

Thus, upon taking the difference quotient, we find that

(185)

lim
x→x0

?( x
1+x

)−?( x0

1+x0
)

x
1+x

− x0

1+x0

= lim
x→x0

(1 + x)(1 + x0)

2
· ?(x)−?(x0)

x − x0

=
(1 + x0)

2

2
lim

x→x0

?(x)−?(x0)

x − x0

.

The second set of implications follow from Lemma 12. ¤
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Theorem 27. If u ∈ (0, 1)∩Q, then u ∈ D(?, 0); that is, ?′(u) = 0. If v = p

2n ∈ (0, 1),
then v ∈ D(¿ ,∞).

Proof. We first consider u = 1
2
. Let

(186)

vm =
1

[0, 2, m]
=

m

2m + 1
=⇒ ?(vm) =

1

2
− 1

2m+1
,

um = 1 − vm =
1

[0, 1, 1, m]
=

m + 1

2m + 1
=⇒ ?(um) =

1

2
+

1

2m+1
.

Observe that um+1 − 1
2

= 2m+1
2m+3

(um − 1
2
) and 1

2
− vm+1 = 2m+1

2m+3
(1

2
− vm), so (um) and

(vm) slowly approach 1
2
. Further,

(187)
?(um)−?(1

2
)

um − 1
2

=
?(vm)−?(1

2
)

vm − 1
2

=
4m + 2

2m+1
→ 0.

It follows that 1
2
∈ D(?, 0).

As we have seen earlier in these notes, every rational number can be constructed
from 1

2
by repeated application of the maps x → 1 − x and x → x

1+x
, and this

completes the proof by Lemma 14. Alternatively, we have 1
2
∈ D(¿ ,∞), and every

dyadic rational is derived from 1
2

by repeated application of x → 1−x and x → x
2
. ¤

Theorem 28.

(188)
1

φ
=

√
5 − 1

2
∈ D(?,∞) =⇒ 2

3
∈ D(¿ , 0).

Proof. We have already shown in (47), (48) that

(189) ?

(

Fn

Fn+1

)

=
2

3
+

(−1)n+1

3 · 2n−1
, ?

(

1

φ

)

=
2

3
.

We note that, like all finite continued fraction approximations, the sequence Fn/Fn+1

alternates above and below its limit:

(190)
F0

F1

<
F2

F3

< · · · <
1

φ
< · · · <

F3

F4

<
F1

F2

.

Recall the Binet formula for Fn, and the identities φ̄ = −φ−1 and φ2 + 1 =
√

5φ, so

(191)

zn :=
Fn

Fn+1

− 1

φ
=

1√
5
(φn + (−1)n+1φ−n)

1√
5
(φn+1 + (−1)n+2φ−(n+1))

− 1

φ

=
φ2n+1 + (−1)n+1φ

φ2n+2 + (−1)n+2
− 1

φ
=

(−1)n+1
√

5

φ2n+2 + (−1)n+2
.

It follows that

(192)

∣

∣

∣

∣

zn+1

zn

∣

∣

∣

∣

→ 1

φ2
> 0.
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and so if

(193) vm =
F2m

F2m+1

↑ 1

φ
, um =

F2m+1

F2m+2

↓ 1

φ
,

then (um) and (vm) slowly approach 1
φ
. We also have

(194)
?
(

Fn

Fn+1

)

−?
(

1
φ

)

Fn

Fn+1
− 1

φ

=
φ2n+2 + (−1)n+2

3
√

5 · 2n−1
→ ∞,

since φ2 = 3+
√

5
2

> 2. The result now follows by Lemma 13. The divergence isn’t
particularly rapid. With n = 10, we have

(195)
?(55

89
)−?( 1

φ
)

55
89

− 1
φ

=
341
512

− 2
3

55
89

− 1
φ

≈ −.000651

−.000056
≈ 11.53.

¤

Corollary 29. If x = [0, a0, . . . , an, 1] for any aj ∈ N, then x ∈ D(?,∞). If u =
p

3·2r ∈ (0, 1) with gcd(p, 3) = 1, then u ∈ D(¿ , 0).

Proof. This is a direct consequence of Lemma 14. The first part may be clearer than
the second. If u < 1

2
, then u = v

2
, where v = p

3·2r−1 . If u > 1
2
, then u = 1 − v

2
, where

v = 3·2r−p

3·2r−1 . ¤

Corollary 30. The Minkowski ?-function is nowhere continuously differentiable.

Proof. The rationals of the form p

3·2r are dense in [0, 1], hence so are the quadratic

irrationals of the form [0, a0, . . . , an, 1]. It follows that every open interval of (0, 1)
contains points where ?′ = 0 and points where ?′ is not differentiable. ¤

We sketch a stab at generalizing Theorem 16. Fix a, b ∈ N and let

(196) θa,b =
1

[a, b]
=

−ab +
√

a2b2 + 4ab

2a
.

(This was discussed on p.9 of this supplement, see (54) and (55).) More specifically,
define sequences (um), (vm) as above, with

(197)

u0 = 1, um =
1

a +
1

b + um−1

:=
p2m

q2m

;

v0 =
1

a
, vm =

1

a +
1

b + vm−1

:=
p2m+1

q2m+1

.
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Then, as before vm ↑ θa,b and um ↓ θa,b. Further, as these are consecutive approxi-
mants, we have

(198)

∣

∣

∣

∣

pn

qn

− pn+1

qn+1

∣

∣

∣

∣

=
1

qnqn+1

.

As consecutive approximants are on alternate sides of their limit, we have

(199)

∣

∣

∣

∣

pn

qn

− pn−2

qn−2

∣

∣

∣

∣

<

∣

∣

∣

∣

pn

qn

− θa,b

∣

∣

∣

∣

<

∣

∣

∣

∣

pn

qn

− pn−1

qn−1

∣

∣

∣

∣

.

It is (and shall be!) an exercise to show that there exists a constant ca,b > 0 so that

(200) qnqn+1 = ca,b

(

ab + 2 +
√

a2b2 + 4ab

2

)n

(1 + o(1)).

(Hints: see equation (41) of these notes, V. You need to look at q2kq2k+1 and q2k+1q2k+2

separately. This formula is valid for the product; q2k and q2k+1 have a different
constant in the asymptotics. Note also that if a = b, then

(201)
ab + 2 +

√
a2b2 + 4ab

2
=

a2 + 2 + a
√

a2 + 4

2
=

(

a +
√

a2 + 4

2

)2

,

so this result is consistent with Theorem 16. In any case, this is a fairly routine
computation. It follows that (um) and (vm) slowly approach θa,b, and after a bit
more work, that

(202)

∣

∣

∣

∣

pn

qn

− θa,b

∣

∣

∣

∣

∼ c′

(

ab + 2 +
√

a2b2 + 4ab

2

)−n

.

It is also easy to see that

(203)

∣

∣

∣

∣

?

(

pn

qn

)

−?(θa,b)

∣

∣

∣

∣

∼ 2−n(a+b)/2.

Thus, θa,b ∈ D(?,∞) if and only if

(204)
ab + 2 +

√
a2b2 + 4ab

2
> 2(a+b)/2.

In our earlier case with a = b = 1, this condition reverts to 3+
√

5
2

> 2. Because of
the exponential growth on the right-hand side in (a, b), it is easy to believe that this
inequality is satisfied for only finitely many pairs (a, b). Noting the symmetry in (a, b),
a Mathematica check shows that the inequality holds precisely when 1 ≤ a ≤ b ≤ 4,
together with (2, 5) and (3, 5). This gives several more countably infinite families of
elements in D(?,∞) as well as irrational elements in D(?, 0).
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There is an extensive literature on the differentiability of ?(x), and it is not our in-
tention to cover it all. Salem, in his paper, first cites the result from metric continued
fraction theory that, for x ∈ (0, 1),

(205) x = [a0(x), a1(x), . . . ],

if we let

(206) A = {x : lim sup
n→∞

an(x) = ∞},

then µ(A) = 1; alternatively, the set of x for which an(x) is bounded has measure
zero. He then proves that if x ∈ A and if ? is differentiable at x, then ?′(x) = 0.
Since ?′ exists a.e., it follows that µ(D(?, 0)) = 1.

There are two fairly recent papers by Paradis, Viader and Biblioni, preprints of
which will be distributed. the main result of interest is a generalization of the fore-
going. Let

(207) T (x) := lim sup
n→∞

a0(x) + · · · + an(x)

n + 1
.

If ?′(x) exists and T (x) > k0 ≈ 5.31972..., then x ∈ D(?, 0); if ?′(x) exists and
T (x) < k1 ≈ 1.38848..., then x ∈ D(?,∞). Here,

(208) 2 log2(1 + k0) = k0, k1 = 2 log2

(

1 +
√

5

2

)

.

These conditions would resolve the behavior of ?′(θa,b) when a+b ≥ 11 and a+b ≤ 2,
under the condition that we knew that ?′ existed.

I believe, but have not been able to find yet in the literature, or prove, that there
exist points x with the property that the difference quotients oscillate arbitrarily
close to zero and arbitrarily large. To make such a point, we consider first consider
a sequence of positive integers nk which grows very rapidly. (I don’t know yet how
rapidly.) We then consider

(209) u2k = [0, 1n1 , n2, . . . , n2k]; u2k+1 = [0, 1n1 , n2, . . . , n2k+1];

The intuition is that in u2k, the behavior is dominated by the large final denomi-
nator, which makes the difference quotient very small, but in u2k+1, the behavior is
dominated by the large number of 1’s in the denominator, which makes the difference
quotient very large.



STERN NOTES, CHAPTER 6 (FIRST DRAFT)

BRUCE REZNICK, UIUC, MATH 595

1. The summatory function

The fact that there is such a simple formula as

(1)

2r+1

∑∗

k=2r

s(n) = 3r

suggests that it might be interesting to see if there is an underlying measure on [0, 1]
induced by the Stern sequence. To this end, we define the function f on [0, 1] by

(2) f(λ) := lim
r→∞

1

3r
·
⌊(1+λ)2r⌋

∑∗

k=2r

s(n).

Except for the trivial values f(0) = 0, f(1
2
) = 1

2
(by symmetry) and f(1) = 1, there

is no a priori reason that this limit should exist, although the pictures of the Stern
sequence distributed earlier suggested a regular pattern.

We first consider dyadic rationals. Suppose λ = k
2v , so that the upper limit in (2)

has a simple expression for r ≥ v:

(3) f

(

k

2v

)

= lim
r→∞

1

3r
·
2r+2r−vk

∑∗

k=2r

s(n) = lim
r→∞

1

3r
·

k−1
∑

j=0





2r+2r−v(j+1))
∑∗

k=2r+2r−vj

s(n)



 .

Recalling our earlier notation

(4) Σ(f ; m, r) =

2r(m+1)
∑∗

n=2rm

f(n),

this becomes

(5) f

(

k

2v

)

= lim
r→∞

1

3r
·

k−1
∑

j=0

Σ(s; 2v + j, r − v).

1
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Further, recall that we observed that

(6)

Σ(s; m, 1) =
s(2m)

2
+ s(2m + 1) +

s(2m + 2)

2

=
s(m)

2
+ s(m) + s(m + 1) +

s(m + 1)

2

=
3

2
(s(m) + s(m + 1)) = 3Σ(s,m, 0),

hence Σ(s; m, t) = 3tΣ(s; m, 0), and the limit in (5) is that of a constant sequence (at
least for r sufficiently large). We find that for r ≥ v,

(7)

f

(

k

2v

)

=
3r−v

3r
·

k−1
∑

j=0

Σ(s; 2v + j, 0) =
1

3v
·

2v+k
∑∗

n=2v

s(n)

=
1

3v
·

2v+k−1
∑

n=2v

s(n) + s(n + 1)

2
=

1

2 · 3v
·

2v+k−1
∑

n=2v

s(2n + 1).

It’s also useful to observe that for k ≥ 1,

(8) f

(

k

2v

)

− f

(

k − 1

2v

)

=
s(2v+1 + 2k − 1)

2 · 3v
,

and since f(0) = 0, this can serve as an alternate definition of f .
To compute this function, we need to look at the odd elements of the Stern se-

quence. In the table below, the first row is s(3), the second is s(5), s(7), etc.

(9)

2

3 3

4 5 5 4

5 7 8 7 7 8 7 5

6 9 11 10 11 13 12 9 9 12 13 11 10 11 9 6

Reading from the bottom row, f( 1
16

) = 6
162

, f( 2
16

) = 6+9
162

= 5
54

= f(1
8
), f( 3

16
) = 6+9+11

162
and so on. We also can easily see that

(10) f

(

1

2v

)

=
v + 2

2 · 3v
.

It is worth noting here that this table of the odd Stern sequence can be generated
autonomously. We have s(2r + 1) = s(2r+1 − 1) = r + 1,

(11)
s(4n + 1) + s(4n + 3) = (2s(n) + s(n + 1)) + (s(n) + 2s(n + 1))

= 3 (s(n) + s(n + 1)) = 3s(2n + 1)

and

(12)
s(4n + 5) − s(4n + 3) = (s(2n + 2) + s(2n + 3)) − (s(2n + 1) + s(2n + 2))

= s(2n + 3) − s(2n + 1).
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Thus, if you have a row of odd terms, then you can make the next row by starting
appropriately and then following these rules. To be specific,

(13)
s(2n + 1) = a, s(2n + 3) = b, s(4n + 1) = c

=⇒ s(4n + 3) = 3a − c, s(4n + 5) = s(4n + 3) + (b − a).

Theorem 1. The function f defined above extends to a continuous, strictly increasing

function F from [0, 1] to itself, satisfying F (1 − x) = 1 − F (x).

Proof. We apply Theorem 5, from the Notes V, supplement. It is certainly the case
that f is defined on a dense subset X of [0, 1], namely the dyadic rationals, and that
f is strictly increasing on its image. We need only show that the image, Y , is dense
in [0, 1]. But it follows from (8) that

(14) f

(

k

2v

)

− f

(

k − 1

2v

)

≤ Fv+3

2 · 3v
≈ φ3

2
√

5

(

φ

3

)v

,

which goes to 0 as v → ∞. Thus, Y is indeed dense in [0, 1].
The mirror symmetry of the r-th row of the diatomic array implies that f(1−x) =

1 − f(x) for any dyadic rational x, and this is inherited by F by continuity. ¤

In the notation of the last notes, F ∈ F . There are now two natural questions.
What is the formula for F (λ) when λ is not a dyadic rational? What can be said
about the differentiability of F? We can answer the first question more easily than
the second.

We begin by rephrasing the definition of f . Let (rj) be a strictly increasing sequence
of positive integers and let λ0 = 0 and

(15) λm =
1

2r1
+ · · · + 1

2rm
, for m ≥ 1,

so that λm = λm−1 + 1
2rm

. We see from (8) that

(16) f(λm) − f(λm−1) =
s(2rm+1(1 + λm) − 1)

2 · 3rm
,

and since f(0) = 0, it follows that

(17) f(λm) =
m

∑

j=1

s(2rj+1(1 + λj) − 1)

2 · 3rj
.

Since every x ∈ [0, 1] is a limit of dyadic rationals xm given as above, we now have
our definition of F :

(18) xm =
m

∑

j=1

1

2rj
, x = lim

m→∞
xm =⇒ F (x) =

∞
∑

j=1

s(2rj+1(1 + λj) − 1)

2 · 3rj
.

We note that this gives a peculiar recurrence satisfied by F .

Theorem 2. We have F (x) − 6F (x
2
) + 9F (x

4
) = 0 for x ∈ [0, 1]; that is, 3nF ( x

2n ) is

linear in n.
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Proof. Let x be given, with rj and λj as above, then for t = 1, 2

(19)
x

2t
=

∞
∑

j=1

1

2rj+t
, λm,t =

λm

2t
=⇒ F (x) − 6F

(x

2

)

+ 9F
(x

4

)

=
∞

∑

j=1

Wj

3rj
,

where

(20)
Wj = s(2rj+1(1 + λj) − 1) − 2s(2rj+2(1 + λj/2) − 1) + s(2rj+3(1 + λj/4) − 1)

= s(2rj+1 + 2rj+1λj − 1) − 2s(2rj+2 + 2rj+1λj − 1) + s(2rj+3 + 2rj+1λj − 1).

But we have already seen that s(2n + k) is linear in n, when 2n > k (as is the case
here), and if g is any linear function, then g(rj + 1) − 2g(rj + 2) + g(rj + 2) = 0.
Thus, Wj = 0 for all j, completing the proof of the identity. If an = 3nF ( x

2n ), then
an+2 − 2an+1 + an = 0, so an is linear in n. ¤

There is already enough information to prove the following theorem.

Theorem 3. If x is a dyadic rational, then F ′(x) = 0.

Proof. We will use the “slowly approaching” lemmas of Notes, V, supplement, pp.
17–18. Let x = k

2r , and for m > r, define

(21) vm =
k

2r
− 1

2m
, um =

k

2r
+

1

2m
.

Then x − vm+1 = 1
2
(x − vm) and um+1 − x = 1

2
(um − x), so Lemma 13 applies. Now

observe that

(22)

F (x) − F (vm) = F

(

k

2r

)

− F

(

k

2r
− 1

2m

)

=
s(2m+1 + k2m−r+1 − 1)

2 · 3m
,

F (um) − F (x) = F

(

k

2r
+

1

2m

)

− F

(

k

2r

)

=
s(2m+1 + k2m−r+1 + 1)

2 · 3m
.

But

(23)

s(2m+1 + k2m−r+1 ± 1) = s(2m−r+1(2r + k) ± 1) =

s(2m−r+1 − 1)s(2r + k) + s(1)s(2r + k ± 1)

= (m − r + 1)s(2r + k) + s(2r + k ± 1),

so, for appropriate constants cj we have

(24)
F (x) − F (vm)

x − vm

=
2m(c1m + c2)

3m
→ 0,

F (um) − F (x)

um − x
=

2m(c1m + c3)

3m
→ 0,

completing the proof. ¤

We shall show later that, if gcd(k, 3) = 1, then k
3·2r ∈ F (f,∞). But in order to do

this, we need a way to calculate F at non-dyadic rationals.
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2. F at non-dyadic rationals

(Please disregard pp. 5 → 7 from the last handout; lots of typos!)
It follows from the geometric series that

(25)
1

3
=

1

22
+

1

24
+

1

26
+ · · · ,

and so from the discussion above, we have

(26) F

(

1

3

)

=
s(23 + 1)

2 · 32
+

s(25 + 23 + 1)

2 · 34
+

s(27 + 25 + 23 + 1)

2 · 36
+ · · · .

The numerator of the r-th term is s(wr), where

(27)
wr = 22r+1 + 2(22r−2 + · · · + 1) − 1 = 22r+1 + 22r−1 + · · · + 23 + 21 − 1

= 22r+1 + · · · + 23 + 1.

By a stroke of luck (I can’t plan things this well!), we have already calculated this
expression: wr = n2r+1 − 2 in the notation of equations (71)–(73) on p.11 of the
Notes, IV (keeping the typos in mind), and

(28) s(wr) = 3F2r + F2r−1.

(We have another computation of this later in the section.) It follows that

(29) F

(

1

3

)

=
∞

∑

r=1

3F2r + F2r−1

2 · 32r
.

In one sense, this is a routine computation, if one breaks down the Fibonacci numbers
via the Binet formula. It’s also interesting to see how this can be done without using
“
√

5” at all, but entirely via the even and odd parts of generating functions:

(30)
∞

∑

n=0

Fnx
n =

x

1 − x − x2
=⇒

∞
∑

n=0

(−1)nFnx
n =

−x

1 + x − x2
.

By adding and subtracting these equations, we find that

(31)

∞
∑

n=0

F2nx
2n =

1

2

(

x

1 − x − x2
− x

1 + x − x2

)

=
x2

1 − 3x2 + x4
;

∞
∑

n=0

F2n+1x
2n+1 =

1

2

(

x

1 − x − x2
+

x

1 + x − x2

)

=
x − x3

1 − 3x2 + x4
.

Since F0 = 0, a mild amount of reindexing gives

(32)

∞
∑

n=0

F2n

32n
=

1/9

1 − 1/3 + 1/81
=

9

55
=⇒

∞
∑

r=1

3F2r

2 · 32r
=

27

110
;

∞
∑

n=0

F2n+1

32n+1
=

1/3 − 1/27

1 − 1/3 + 1/81
=

24

55
=⇒

∞
∑

r=1

F2r−1

2 · 32r
=

∞
∑

r=0

F2r+1

2 · 32r+2
=

8

110
.
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We conclude that

(33) F

(

1

3

)

=
27

110
+

8

110
=

35

110
=

7

22
.

You may be forgiven for not quite believing this. As a nod towards the skeptical,
216 = 65536, 4

3
· 216 = 873811

3
, and a Mathematica calculation shows that

(34)
1

316
·

87381
∑∗

n=65536

s(n) − 7

22
=

27391903

86093442
− 7

22
= − 8057

473513931
,

if I’ve copied right. The difference is in the fifth decimal place, which is pretty close.
What does this mean? Since F (1

3
) = 7

22
, we must have F (2

3
) = 15

22
, so there is

slightly more Stern “stuff” in the middle than at the ends. This is also shown by
F (1

4
) = 2

9
and F (3

4
) = 7

9
.

We generalize, and reaffirm these numbers. Suppose k ≥ 2. Then

(35)
1

2k − 1
=

1

2k
+

1

22k
+

1

23k
+ · · · .

It follows that

(36) F

(

1

2k − 1

)

=
s(2k+1 + 1)

2 · 3k
+

s(22k+1 + 2k+1 + 1)

2 · 32k1
+ · · · .

We have made a very similar computation recently. If we take m = 1 in the “Bonus

round” Theorem of HW2 solutions, and define ar = 2kr−1
2k−1

= 2k(r−1) + · · · + 2k + 1,

then since s(m + 1) + s(2k − m) = s(2) + s(2k − 1) = k + 1, we have that

(37) s(a0) = 0, s(a1) = 1, s(ar+2) − (k + 1)s(ar+1) + s(ar) = 0.

In this notation, if we let cj = 2jk+1 + · · · + 2k+1 + 1 = 2aj+1 − 1, then

(38) s(cj) = s(aj+1) + s(aj+1 − 1) = s(aj+1) + s(2kaj) = s(aj+1) + s(aj),

and so s(cj+2) − (k + 1)s(cj+1) + s(cj) = 0 as well. That is,

(39) F

(

1

2k − 1

)

=
∞

∑

j=1

s(cj)

2 · 3jk
,

and can now use the method of generating functions to evaluate the sum:

(40)
Φ(X) =

∞
∑

j=1

s(cj)X
j

=⇒ (1 − (k + 1)X + X2)Φ(X) = s(c1)X + (s(c2) − (k + 1)s(c1))X
2.
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Now s(c1) = s(a2) + s(a1) = (k + 1) + 1 = k + 2 and s(c2) = s(a3) + s(a2) =
(k2 + 2k) + (k + 1) = k2 + 3k + 1, so

(41)

Φ(X) =
(k + 2)X − X2

1 − (k + 1)X + X2

=⇒ F

(

1

2k − 1

)

=
1

2
· Φ

(

1

3k

)

=
(k + 2)3k − 1

2(32k − (k + 1)3k + 1)
.

As a check, for k = 2, this becomes

(42) F

(

1

3

)

=
36 − 1

2(81 − 27 + 1)
=

35

110
=

7

22
.

The next step would be to calculate F ( 2
2k−1

), because then the recurrence in Theorem

3 will give us F ( 2j

2k−1
) for all integral j < k, including negative j. We don’t need this

for k = 2, because 2
3

= 1 − 1
3
. Let

(43) an = 3nF

(

1

2n
· 2

3

)

.

Theorem 3 shows that an is linear in n, and since a0 = F (2
3
) = 15

22
and a1 = 3F (1

3
) =

21
22

, we have an = 15+6n
22

. Thus,

(44) F

(

1

6

)

=
1

9
· 27

22
=

3

22
, F

(

1

12

)

=
1

27
· 33

22
=

1

18
, F

(

1

3 · 2r

)

=
7 + 2r

22 · 3r
.

We now wish to show that F is not differentiable at λ = m
3·2v , provided gcd(3,m) =

1. In the interest of time, and interest, we shall only write out the details in one
direction. Recall our notations from p.3 of these notes.

Lemma 4. If

(45) lim
n→∞

2rn · s(2rn+1(1 + λn) − 1)

3rn
= ∞,

then F is not differentiable at x.

Proof. We have the following inequalities:

(46)
F (λ) − F (λn−1) ≥

s(2rn+1(1 + λn) − 1)

2 · 3rn

x − λn−1 <
1

2rn
+

1

2rn+1
+

1

2rn+2
· · · =

2

2rn
.

If (45) holds, then it follows that

(47)
F (λ) − F (λn−1)

λ − λn−1

>
2rn · s(2rn+1(1 + λn) − 1)

4 · 3rn
→ ∞

as n → ∞, and hence F is not differentiable at λ. ¤
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A more careful argument can show that the difference quotient goes to ∞ as λ is
approached from the left. (Note that there is no guarantee here that λm converges
slowly to λ, because the difference between the rm’s might be unbounded if λ is
irrational.)

Theorem 5. If λ = m
3·2v and gcd(3,m) = 1, then F is not differentiable at λ.

Proof. First suppose λ = k
2v + 1

3·2v . We have

(48) λ =
k

2v
+

1

2v+2
+

1

2v+4
+ · · · ,

so

(49) λj =
22jk + 22j−2 + · · · + 1

2v+2j
.

If

(50) zj = 2v+2j+1 + 22j+1k + 22j−1 + · · · + 23 + 1,

then

(51) F (λ) = F

(

k

2v

)

+
∞

∑

j=1

s(zj)

2 · 3v+2j
.

However, zj = [· · · (10)j−21001]2, so zj ∼ [· · · 12j−321], and so s(zj) ≥ F2j – a very
crude bound! Applying the lemma, we have

(52)
2rms(2rm+1(1 + λm) − 1)

3rm
≥ 2v+2mF2m

3v+2m
=

(

2

3

)v

· 22mF2m

32m
.

The numerator grows like (1 +
√

5)2m, and since 1 +
√

5 > 3, it follows that the
quotient goes to ∞ and F is not differentiable at λ.

If λ = k
2v + 2

3·2v , then λ = 1−λ′, where λ′ = 2v−k−1
2v + 1

3·2v , and F is not differentiable
at λ′. But since F (1 − x) = 1 − F (x), it follows that F is not differentiable at λ
either. ¤

We conclude this section with a more careful computation of F . Let s(2v + k) = a
and s(2v +k+1) = b and recall the definition of wr from equation (27) of these notes.
We have

(53)

z1 = 23(2v + k) + 1 =⇒ s(z1) = s(7)a + s(1)b = 3a + b,

z2 = 25(2v + k) + 23 + 1 =⇒ s(z2) = s(23)a + s(9)b = 7a + 4b,

z3 = 27(2v + k) + 25 + 23 + 1 =⇒ s(z3) = s(87)a + s(41)b = 18a + 11b.

Much of this should look familiar: these are elements of the Lucas sequence (recall:
L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2, or Ln = Fn+1 + Fn−1.)
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There are many ways to prove this (I’m sure it follows from earlier notes), but here’s
a different way, using the basic recurrence. We see directly that zn+1 = 4zn + 5, so
zn+2 = 16zn + 21 and zn+3 = 64zn + 85. Thus,

(54)

s(zn+1) = 2s(zn + 1) + s(zn + 2),

s(zn+2) = 5s(zn + 1) + 3s(zn + 2),

s(zn+3) = 13s(zn + 1) + 8s(zn + 2)

=⇒ s(zn+3) − 3s(zn+2) + s(zn+1) = 0

Any sequence (xn) which satisfies xn+2 = xn+1+xn will also satisfy xn+4 = 3xn+2−xn,
and so it follows from the last two equations that

(55) s(zj) = L2ja + L2j−1b.

The next step is to form the generating function

(56)

Ψ(X) =
∞

∑

j=1

s(zj)X
j

=⇒ (1 − 3X + X2)Ψ(x) = s(z1)X + (s(z2) − 3s(z1))X
2

=⇒ Ψ(X) =
(3a + b)X + (−2a + b)X2

1 − 3X + X2

=⇒
∞

∑

j=1

s(zj)

32j
=

9(3a + b) + (−2a + b)

81 − 27 + 1
=

5a + 2b

11
.

Theorem 6. Suppose a = s(2v + k) and b = s(2v + k + 1). Then

(57)

F

(

k

2v
+

1

3 · 2v

)

− F

(

k

2v

)

=
5a + 2b

22 · 3v
;

F

(

k

2v
+

2

3 · 2v

)

− F

(

k

2v
+

1

3 · 2v

)

=
4a + 4b

22 · 3v
;

F

(

k + 1

2v

)

− F

(

k

2v
+

2

3 · 2v

)

=
2a + 5b

22 · 3v
.

Proof. The first equation follows from (56), applied to (50). The third follows from
symmetry by considering F (1 − x) = 1 − F (x). Finally, the second follows from
subtracting the sum of the first and the last from (8), when rewritten in the way it
will appear in the second draft:

(58) F

(

k + 1

2v

)

− F

(

k

2v

)

=
a + b

2 · 3v
.

¤

It seems surely possible to continue this work for any odd division of a dyadic
interval, but we’ll stop here.
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We close this section with some numbers. We have already seen that when [0, 1]
is broken up into 1

8
-ths, the fraction of the Stern mass is divided in ratio 5 : 7 : 8 :

7 : 7 : 8 : 7 : 5. Using Theorem 6, we can compute the mass when [0, 1] is broken up
into 1

24
-ths. By symmetry, we only pressent the first 12: is divided in ratio

(59) 13 : 20 : 22 : 26 : 28 : 23 : 25 : 32 : 31 : 29 : 28 : 20.

The denominator here is 11 · 54 = 594. Thus, F ( 1
24

) = 13
594

, F ( 2
24

) = F ( 1
12

) =
33
594

= 1
18

, as we have seen, etc. And in the largest six 24-ths of the interval –

x ∈ [ 7
24

, 10
24

]∪ [14
24

, 17
24

], we find 2(32+31+29)
594

≈ 31% of the total mass. In other words, it’s
pretty well distributed, at least on this level of granularity.

3. More to do

We bid a farewell to F with these notes, but there is more work to do.
• The closed form for F is unsatisfactory in some ways, and it would be good to

find a version in which the infinite sum did not involve unevaluated elements of the
Stern sequence.
• It is almost certainly true that if x ∈ Q, then F (x) ∈ Q. This would follow

from the eventual periodicity of the binary expansion of x, when combined with the
(unproved) lemma that if (yn) is a sequence given by the recurrence yn+1 = 2ryn + a,
with 0 ≤ a < 2r, then s(yn) satsifies a second order recurrence. This can be proved
using a version of the bonus round theorem, which will undoubtedly have a more
dignified name in the second draft.
• I’ll put the computation of F (1

5
) on the homework. Once this is done, it is also

possible, if tedious, to write a version of Theorem 6 for 5-ths.
• It is totally natural to define the measure µF on [0, 1] by “differentiating’ F :

(60) µ([0, x]) := F (x) =

∫ x

0

dµF

It is also totally natural to make a pun out of a cliche and call this the Stern measure.
I have not found (yet) anything really interesting which will let me say that the ”Stern
measure must be applied.” The most natural questions about this measure would be
to find its moments; that is

(61)

∫ 1

0

tk dµF .

• A picture of F was given in the first day’s handout. Some questions which come
to mind there are these: what is the maximum of f(x) − x? where does it occur?
what can be said about the places where f(x) = x, besides x = 0, 1

2
, 1?
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4. F (1
5
) and more

We really ought to work out F (1
5
). First observe that

(62)
1

5
=

3

15
=

21 + 20

24 − 1
=

1

23
+

1

24
+

1

27
+

1

28
+

1

211
+

1

212
+ · · · .

We define the sequence of consecutive dyadic approximations to 1
5
:

(63) λ0 = 0, λ1 =
1

23
, λ2 = λ1 +

1

24
, λ3 = λ2 +

1

27
, λ4 = λ3 +

1

28
. . . ;

that is,

(64) λ2m = λ2m−1 +
1

24m
, λ2m+1 = λ2m +

1

24m+3
.

As we’ve seen before

(65)

F

(

1

5

)

=
∞

∑

k=1

F (λk) − F (λk−1)

=
∞

∑

m=0

s(24m+4(1 + λ2m+1) − 1)

2 · 34m+3
+

∞
∑

m=1

s(24m+1(1 + λ2m) − 1)

2 · 34m
.

Let

(66) αm = 24m+1(1+λ2m)−1 = 2ym−1, βm = 24m+4(1+λ2m+1)−1 = 2zm−1.

Then

(67)

ym = 24m(1 + λ2m) = 24m

(

1 + λ2m−1 +
1

24m

)

= 2zm−1 + 1

zm = 24m+3(1 + λ2m+1) = 24m+3

(

1 + λ2m +
1

24m+3

)

= 8ym + 1.

Thus, ym+1 = 2zm + 1 = 16ym + 3 (so ym+2 = 256ym + 51), and zm+1 = 8ym+1 + 1 =
16zm + 9 (so zm+2 = 256zm + 153). We have, in a disturbingly familiar calculation:

(68)
s(ym+1) = 5s(ym) + 2s(ym + 1), s(ym+2) = 29s(ym) + 12s(ym + 1),

s(zm+1) = 3s(zm) + 4s(zm + 1), s(zm+2) = 17s(zm) + 24s(zm + 1).

It follows that the sequences {s(ym)} and {s(zm)} each satisfy the recurrence

(69) xm+2 − 6xm+1 + xm = 0.

Observe as well that

(70)
s(αm) = s(2ym − 1) = s(ym) + s(ym − 1) = s(ym) + s(2zm−1),

s(βm) = s(2zm − 1) = s(zm) + s(zm − 1) = s(zm) + s(8ym).
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Returning to the task at hand, we have

(71) F

(

1

5

)

=
∞

∑

m=0

s(ym) + s(zm)

2 · 34m+3
+

∞
∑

m=1

s(ym) + s(zm−1)

2 · 34m
.

Finally, let

(72)

Φ(X) =
∞

∑

m=0

(s(ym) + s(zm))Xm = 5 + 31X + 181X2 + . . .

Ψ(X) =
∞

∑

m=1

(s(ym) + s(zm−1)X
m = 11X + 65X2 + 379X3 + . . . .

The coefficients of Φ and Ψ each satisfy the recurrence (69), and so when they are
multiplied by 1 − 6X + X2 yield a polynomial:

(73) Φ(X) =
5 − X

1 − 6X + X2
, Ψ(X) =

11X − X2

1 − 6X + X2
.

A final computation gives

(74) F

(

1

5

)

=
Φ(3−4)

54
+

Ψ(3−4)

2
=

87

868
+

445

6076
=

17

98
.

I can assert with some confidence that someone some day will find a more direct
way of computing F (1

5
) without needing denominators as large as 6076. Perhaps this

would follow from

(75)
1

5
=

1

22
− 1

24
+

1

26
− + . . . .

In any event, some skepticism is appropriate, and we again check numerically:
6
5
· 216 = 78643.2, and another Mathematica calculation shows that

(76)
1

316
·

78643
∑∗

n=65536

s(n) − 17

98
=

7467080

43046721
− 17

98
= − 20417

4218578658
,

if I’ve copied right. The difference again is in the fifth decimal place, which is pretty
close, so this is probably right.

We have now by symmetry that F (4
5
) = 1 − F (1

5
) = 81

98
. Theorem 2 says that

F (4
5
), 3F (2

5
) and 9F (1

5
) are in arithmetic progression, hence 3F (2

5
) = 117

98
and so

F (2
5
) = 39

98
and F (3

5
) = 59

98
. Thus the Stern division by fifths is

(77) 17 : 22 : 20 : 22 : 17,

which is both regular and irregular enough to hint at some deeper structures.
More generally, and in a nod towards the second draft of these notes, let

(78) x =
∞

∑

k=1

1

2rk
, λn =

n
∑

k=1

1

2rk
, δ1 = r1, δk = rk − rk−1 (k ≥ 2).
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Then as usual,

(79) F (x) =
∞

∑

n=1

s(2rn+1(1 + λn) − 1)

2 · 3rn
.

Following the pattern for 1
5
, for n ≥ 1, let

(80) 2yn − 1 = 2rn+1(1 + λn) − 1.

It then follows that for n ≥ 2,

(81) yn = 2rn(1 + λn) = 2δn2rn−1(1 + λn−1 + 2−rn) = 2δnyn−1 + 1.

Since y1 = 2r1 + 1, this recurrence is also valid if we set y0 = 1. Now, we have

(82) s(2yn − 1) = s(yn) + s(yn − 1) = s(yn) + s(2δnyn−1) = s(yn) + s(yn−1),

and the expression for F simplifies:

(83) F (x) =
∞

∑

n=1

s(yn−1) + s(yn))

2 · 3rn
.

We have s(y0) = s(1) = 1 and s(y1) = s(2r1 +1) = δ1 +1. In general, if x1 = 2ax0 +1
and x2 = 2bx1 + 1 = 2a+bx0 + 2b + 1, then since

(84) s(2a+b−2b−1) = s(2b(2a−1)−1) = s(2b−1)s(2a−1)+s(1)s(2a−2) = ab+a−1,

we have

(85)
s(x1) = as(x0) + s(x0 + 1), s(x2) = (ab + a − 1)s(x0) + (b + 1)s(x0 + 1)

=⇒ s(x2) = (b + 1)s(x1) − s(x0).

It follows that the sequence s(ym) satisfies the recurrence

(86) s(ym) = δms(ym−1) − s(ym−2), for m ≥ 2.

If x is irrational, then the dyadic expression for x is not repeating, but if x ∈ Q, then
eventually the δm’s are periodic, with period p say. It follows that each sequence
s(ypt+j) will satisfy a second-order recurrence of some kind and the method shown
above will allow a computation of F (x) via a number of generating functions. Also,

(87)
s(ym)

s(ym−1)
= δm −

1
s(ym−1)
s(ym−2)

= . . .

Every positive integer can be written in this way:

(88) n = 2rm + · · · + 2r1 + 1 = 2r1(2rm−r1 + · · · + 2r2−r1) + 1, . . .

and so this gives a less canonical form for s(n) as hte numerator of a (non-simple)
continued fraction. If n has this form, then

(89) n ∼ [1, rm − rm−1 − 1, 1, . . . , r2 − r1 − 1, 1, r1 − 1, 1]2

If rk = rk−1 + 1, then the 1’s are consecutive. However, as we have observed, the
continuant is smart enough to notice: see Notes, IV, Theorem 6.
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Mathematics Subject Classification (2010). Primary:11A63,11P81, Sec-
ondary: 11B34, 11B50.

Keywords. partitions, digital representations, Stern sequence.

1. Introduction

Let A = {0 = a0 < a1 < · · · } denote a finite or infinite subset of N containing
0, and fix an integer b ≥ 2. Let fA,b(n) denote the number of ways to write
n in the form

n =
∞∑
k=0

εkb
k, εk ∈ A. (1.1)

The uniqueness of the standard base-b representation of n ≥ 0 reflects the fact
that fA,b(n) = 1 for A = {0, . . . , b−1}. For non-standard bases, the behavior
of fA,b(n) has been studied primarily when A = N or b = 2, in terms of
congruences at special values, and also asymptotically. In this paper, we are
concerned with the behavior of fA,b(n) (mod d), especially when b = d = 2,
and when A is finite.

We associate to A its characteristic function χA(n), and the generating
function

φA(x) :=
∞∑
n=0

χA(n)xn =
∑
a∈A

xa = 1 + xa1 + · · · . (1.2)

Anders and Weber Lansing received support from National Science Foundation grant DMS
0838434 EMSW21MCTP: Research Experience for Graduate Students.
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Let

FA,b(x) :=
∞∑
n=0

fA,b(n)xn (1.3)

denote the generating function of fA,b(n). Viewing (1.1) as a partition prob-
lem, we find an immediate infinite product representation for FA,b(x):

FA,b(x) =
∞∏
k=0

(
1 + xa1b

k

+ · · ·
)

=
∞∏
k=0

φA(xb
k

). (1.4)

Observe that (1.1) implies that n ≡ ε0 (mod b). Thus, every such rep-
resentation may be rewritten as

n =
∞∑
j=0

εjb
j = ε0 + b

 ∞∑
j=0

εj+1b
j

 . (1.5)

Since fA,b(n) = 0 for n < 0, we see that (1.5) gives the recurrence

fA,b(n) =
∑
a∈A,

n≡a mod b

fA,b
(
n−a
b

)
, for n ≥ 1. (1.6)

Alternatively, decompose A into residue classes mod b and write

A =
b−1⋃
i=0

Ai, where Ai := A ∩ (bZ + i). (1.7)

If we write Ai = {bvk,i + i}, then for m ≥ 0 and 0 ≤ i ≤ b− 1:

fA,b(bm+ i) =
∑
k

fA,b(m− vk,i). (1.8)

The initial condition fA,b(0) = 1, combined with (1.6) or (1.8), is sufficient
to determine fA,b(n) for all n > 0.

We say that a sequence (un) is ultimately periodic if there exist integers
N ≥ 0, T ≥ 1 so that, for n ≥ N , un+T = un. The period of an ultimately
periodic sequence is the smallest such T . By extension, we say that the set A
is ultimately periodic if the sequence of its characteristic function, (χA(n)),
is ultimately periodic. Equivalently, A is ultimately periodic if there exists
T , and k ≥ 1 integers r1, . . . , rk, 0 ≤ ri ≤ T − 1, so that the symmetric set
difference of A and ∪(TN + ri) is finite. In particular, if A is finite or the
complement of a finite set, then A is ultimately periodic.

Theorem 1.1. As elements of F2[[x]],

FA,2(x)φA(x) = 1. (1.9)

This theorem also appears as [5, Lemma 2.2(ii)], although the impli-
cations we discuss here for digital representations are not pursued there in
detail. Theorem 1.1 has an immediate corollary.
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Corollary 1.2.

1. If A is finite, then there is a computable integer T = T (A) > 0 so that
for all n ≥ 0, fA,2(n) ≡ fA,2(n+ T ) (mod 2).

2. If A is infinite, then the following are equivalent:
(i) The sequence (fA,2(n) (mod 2)) is ultimately periodic.
(ii) φA(x) is the power series of a rational function in F2(x).
(iii) The set A is ultimately periodic.

It will follow from Corollary 1.2(1) that ifA is a finite set, and T = T (A),
then there is a complementary finite set A′ = {0 = b0 < b1 < · · · } so that

fA,2(n) is odd ⇐⇒ n ≡ bk (mod T ) for some bk;

fA′,2(n) is odd ⇐⇒ n ≡ ak (mod T ) for some ak.
(1.10)

Complementary sets needn’t look very much alike. If A = {0, 1, 4, 9}, then
T = 84 and |A′| = 41, with elements ranging from 0 to 75 (see Example 4.3).

One instance of Theorem 1.1 in the literature comes from the Stern
sequence (s(n)) (see [13, 8, 11]), which is defined by

s(0) = 0, s(1) = 1;

s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1) for n ≥ 1.
(1.11)

It was proved in [10] that s(n) = f{0,1,2},2(n−1), under which the recurrence
(1.11) is a translation of (1.8). It is easy to prove, and has basically been
known since [13, p.197], that s(n) is even if and only if n is a multiple of
three. A simple application of Theorem 1.1 shows that in F2(x),

F{0,1,2},2(x) =
1

1 + x+ x2
=

1 + x

1 + x3
= 1+x+x3 +x4 +x6 +x7 + · · · . (1.12)

This result was generalized in [10, Th.2.14], using the infinite product (1.4).
Here, let Ad = {0, . . . , d− 1}. Then φAd

(x) = 1−xd

1−x , so in F2(x),

FAd,2(x) =
1 + x

1 + xd
= 1 + x+ xd + xd+1 + x2d + x2d+1 + · · · . (1.13)

Thus, fAd,2(n) is odd if and only if n ≡ 0, 1 (mod d).
We also show that there is no obvious “universal” generalization of

Theorem 1.1 to fA,b(n) (mod d), except for the case b = d = 2.

Theorem 1.3.

1. If (f{0,1,2},2(n) (mod d)) is ultimately periodic with period T , then d = 2
and T = 3.

2. If d ≥ 2 and b ≥ 3, then (f{0,1},b(n) (mod d)) is never ultimately peri-
odic.

Thus, the Stern sequence has no periodicities mod d ≥ 3 and, there
exists a set A with the property that the number of its representations in
any base b ≥ 3 is never ultimately periodic modulo any d ≥ 2.

Let ν2(m) denote the largest power of 2 dividing m. In 1969, Church-
house [4] conjectured, based on numerical evidence, that fN,2(n) is even for
n ≥ 2, that 4 | fN,2(n) if and only if either ν2(n − 1) or ν2(n) is a positive
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even integer, and that 8 never divides fN,2(n). He also conjectured that, for
all even m,

ν2(fN,2(4m))− ν2(fN,2(m)) = b 32 (3ν2(m) + 4)c. (1.14)

This conjecture was proved in the next few years by Rødseth, and by Gupta
and generalized by Hirschhorn and Loxton, Rødseth, Gupta, Andrews, Gupta
and Pleasants, and most recently by Rødseth and Sellers [12]. We refer the
reader to [10, 12] for detailed references. The statements in Theorem 1.3 about
the non-existence of recurrences do not apply to formulas such as (1.14). On
the other hand, φN(x) = (1 + x)−1, so Theorem 1.1 implies that fN,2(n) is
even for n ≥ 2.

The paper is organized as follows. In section two, we review some fa-
miliar facts about polynomials and rational functions over F2. Most of this
material can be found in [9], and is included here for the sake of complete-
ness. In section three, we give two proofs of Theorem 1.1 and then prove
Corollary 1.2 and Theorem 1.3. In section four, we present several examples
and applications of Theorem 1.1.

Portions of the research in this paper were contained in Dennison’s
UIUC Ph.D. dissertation [6] and in the UIUC Summer 2010 Research Ex-
periences for Graduate Students (REGS) project [1] of Anders and Weber
Lansing. These projects were written under Reznick’s supervision.

The authors thank Bob McEliece and Kevin O’Bryant for helpful cor-
respondence, and the referee for an insightful report.

2. Background

There is an important relationship between rational functions in F2[[x]] and
ultimately periodic sequences. (For additional information about most of the
material in this section, see [9], especially Chapter 8, “Linear Recurring Se-
quences”.) We first recall some familiar facts about finite fields, identifying
Z/pZ with Fp for prime p. The binomial theorem implies that for a, b ∈ Fp,
(a + b)p = ap + bp, hence (

∑
ai)p =

∑
api . It follows from this fact and

Fermat’s Little Theorem that for any polynomial f ∈ Fp[x],

f(x)p = f(xp). (2.1)

If f ∈ F2[x] is an irreducible polynomial of degree d ≥ 2 (so f(0) 6= 0),
then it is well-known that f(x) | 1 +x2d−1. Repeated application of (2.1) for
p = 2 shows that (1+xM )2

k

= 1+x2k·M , hence if f ∈ F2[x] is irreducible and
j ≤ 2k, then f(x)j | 1 + x2k·(2d−1). This leads immediately to the following
lemma (see [2, Thm.6.21]):

Lemma 2.1. Suppose h ∈ F2[x], h(0) 6= 0 and h can be factored over F2[x] as

h =
s∏
i=1

fei
i , (2.2)
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where the fi are distinct irreducible polynomials with deg(fi) = di, and sup-
pose 2k ≥ ei for all i and some k ∈ N. Then

h(x) | 1 + xM , where M := M(h) = 2k · lcm(2d1 − 1, . . . , 2ds − 1). (2.3)

Suppose h ∈ F2[x] and h(0) = 1. The period of h is the smallest T ≥ 1 so
that h(x) | 1 + xT ; this definition does not assume that h is irreducible. The
period of h can be much smaller than M(h), however it is always a divisor
of M(h).

Lemma 2.2. If h has period T , then h(x) | 1 + xV in F2[x] if and only if
T | V .

Proof. We first note that (1 + xT ) | (1 + xkT ), proving one direction. For
the other, suppose h(x) | 1 + xV ; then V ≥ T . Write V = kT + r, where
0 ≤ r ≤ T − 1. Then h(x) also divides

xr(1 + xkT ) + 1 + xV = 1 + xr, (2.4)

which violates the minimality of T unless r = 0. �

If h ∈ F2[x] is irreducible, deg h = r and the period of h is 2r − 1, then
h is called primitive; see e.g.[9, §3.15]. Primitive trinomials have attracted
much recent interest, especially when 2r − 1 is a Mersenne prime (see [3]);
Lemma 2.1 implies that all such irreducible h are primitive. In coding theory,
h is called the generator polynomial and

q(x) =
1 + xT

h(x)
(2.5)

is called the parity-check polynomial.
Consider a rational function in F2(x):

g(x)
h(x)

= a(x) +
r(x)
h(x)

, (2.6)

where g, h, a, r are polynomials, and deg r < deg h. We make the additional
assumption that h(0) 6= 0. Lemma 2.1 leads to an important relationship
between rational functions and ultimately periodicity.

Lemma 2.3. Suppose b(x) =
∑
bnx

n ∈ F2[[x]] with b0 = 1. Then b(x) is a
rational function if and only if {n : bn = 1} is ultimately periodic.

Proof. First suppose there exists T,N so that bn = bn+T for n ≥ N . Then
the coefficient of xn+T in

(1 + xT )

( ∞∑
n=0

bnx
n

)
(2.7)

is bn+T + bn = 0 for n ≥ N . Hence, b(x) is the quotient of a polynomial of
degree less than N and 1+xT , and is thereby a rational function. Conversely,
suppose b = g/h is rational and is given by (2.6) with h(0) = 1. Then by
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Lemma 2.1 and the division algorithm, there exists q(x) ∈ F2[x] and T so
that

b(x) = a(x) +
r(x)
h(x)

= a(x) +
r(x)q(x)
1 + xT

, (2.8)

hence (1 +xT )b(x) is a polynomial of degree less than M (say), so bn = bn+T

for n ≥M . �

3. Proofs

We start this section with two proofs of Theorem 1.1. The first one is some-
what longer, but yields a recurrence of independent interest.

As in (1.7), write

A = {0 = a0 < a1 < · · · } = A0 ∪ A1;

A0 = {0 = 2b0 < 2b1 < · · · }, A1 = {2c1 + 1 < · · · }.
(3.1)

We will write fA,2(n) as f(n) when there is no ambiguity. By (1.8), we have:

f(2n) =
∑
i

f(n− bi), f(2n+ 1) =
∑
j

f(n− cj). (3.2)

Theorem 3.1. For all n ∈ Z, n 6= 0,

Θ(n) :=
∑
k

f(n− ak) ≡ 0 (mod 2). (3.3)

Proof. If n < 0, then f(n) = 0, so this is immediate; also Θ(0) = f(0) = 1.
Suppose n > 0. We distinguish two cases: n = 2m and n = 2m+ 1, and put
(3.2) back into itself. We then diagonalize the double sums below; for each
fixed m, these sums are finite:

Θ(2m) =
∑
k

f(2m− ak) =
∑
i

f(2m− 2bi) +
∑
j

f(2m− 2cj − 1)

=
∑
i

∑
u

f(m− bi − bu) +
∑
j

∑
v

f(m− cj − 1− cv)

=
∑
i

f(m− 2bi) + 2
∑
i<u

f(m− bi − bu)

+
∑
j

f(m− 2cj − 1) + 2
∑
j<v

f(m− cj − cv − 1)

≡ Θ(m) (mod 2).

(3.4)
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Similarly,

Θ(2m+ 1) =
∑
k

f(2m+ 1− ak)

=
∑
i

f(2m+ 1− 2bi) +
∑
j

f(2m− 2cj)

=
∑
i

∑
j

f(m− bi − cj) +
∑
j

∑
i

f(m− cj − bi)

= 2
∑
i,j

f(m− bi − cj) ≡ 0 (mod 2).

(3.5)

Since Θ(2m) ≡ Θ(m) and Θ(2m + 1) ≡ 0, it follows by induction that
Θ(m) ≡ 0 for m ≥ 1. �

We give two proofs of Theorem 1.1. The first uses Theorem 3.1; the
second uses the generating function (1.3) and is also [5, Lemma 2.1].

First proof of Theorem 1.1. Write out the product in (1.9) and use Theorem
3.1.

FA,2(x)φA(x) =

( ∞∑
n=0

f(n)xn
)1 +

∑
i≥1

xai

 =
∞∑
n=0

Θ(n)xn ≡ 1. (3.6)

�

Second proof of Theorem 1.1. By repeated use of (1.4) and (2.1),

φA(x)F 2
A,2(x) ≡ φA(x)FA,2(x2) = φA(x)

∞∏
k=0

φA

(
x2k+1

)
= FA,2(x). (3.7)

�

The second proof generalizes to primes p > 2 via (2.1).

Theorem 3.2. If b = p is prime, then F p−1
A,p (x)φA(x) = 1 ∈ Fp[x].

Proof. As before, we have

φA(x)F pA,p(x) = φA(x)FA,p(xp) = φA(x)
∞∏
k=0

φA(xp
k+1

) = FA,p(x). (3.8)

�

This result may fail if b is not prime. For example, if A = {0, 1} and
b = 4, then φA(x) = 1 + x and the coefficient of x2 in F 3

A,4(x)φA(x) is 6 6≡ 0

mod 4. Theorem 3.2 implies that FA,p(x) = φ
−1/(p−1)
A (x) as an element of

Fp[[x]].
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Proof of Corollary 1.2(1). Suppose A is finite and T is the period of φA(x).
Then by Theorem 1.1, we have in F2[x]

FA,2(x) =
1

φA(x)
=

q(x)
1 + xT

, (3.9)

where (1+xT )FA,2(x) = q(x) = 1+
∑
xbk and deg q < T . Since the coefficient

of xn+T in q is f(n+ T )− f(n) = 0, (f(n) (mod 2)) is periodic with period
T . �

Let A′ = {0 = b0 < b1 < · · · } denote the (finite) set of exponents which
occur in q in (3.9); q(x) = φA′(x). It follows from Theorem 1.1 that

FA′,2(x) =
1

φA′(x)
=

1
q(x)

=
φA(x)
1 + xT

. (3.10)

Equation (1.10) now follows from (3.9) and (3.10). One might hope that
(A′)′ = A, but that will not be the case if A′ has a smaller period than
A. For example, if Ad = {0, . . . , d − 1}, then φAd

(x)(1 + x) = 1 + xd, so,
regardless of d, A′d = {0, 1}. In terms of (1.10), fAd,2(n) is odd if and only
if n ≡ 0, 1 (mod d) (as proved in [10]) and fA′d,2(n) is odd if and only if
n ≡ 0, 1, . . . , d − 1 (mod d). That is, fA′d,2(n) is odd for all n ≥ 0, which is
true, because it always equals 1.

Since (fA,2(n) (mod 2)) is periodic, it is natural to ask for the pro-
portion of even and odd values. It follows immediately from (1.10) that the
density of n for which fA(n) is odd is equal to |A′|/T . Computations with
small examples lead to the conjecture that |A′| ≤ T+1

2 . This conjecture is
false. The smallest such example we have found is A0 = {0, 1, 5, 9, 10}. It
turns out that the period of A0 is 33 and |A′0| = 18 > 33+1

2 . On the other
hand, it is well-known that if φA is primitive, then |A′| = T+1

2 ; see [5, §4]
and [9, p.449].

Proof of Corollary 1.2(2). By Lemma 2.3, if A is infinite, then the sequence
(fA,2(n) (mod 2)) is ultimately periodic if and only if FA,2(x) is a rational
function, and by Theorem 1.1, this is so if and only if φA(x) is a rational
function. Suppose

φA(x) = a(x) +
q(x)

1 + xT
∈ F2(x), (3.11)

where a, q ∈ F2[x], deg a < N and deg q < T and q(x) = 1 +
∑
i x

bi . Recall
that m ∈ A if and only if xm appears in φA(x). By (3.11), this holds for
m > N if and only if there exists bi ∈ A′ so that N ≡ bi (mod T ). �

We conclude this section with proofs of Theorem 1.3(1) and (2).

Proof of Theorem 1.3(1). Let f(n) := f{0,1,2},2(n) and suppose f(n + T ) ≡
f(n) (mod d) for all sufficiently large n, where T is minimal. By (1.8),

f(2m) = f(m) + f(m− 1) and f(2m+ 1) = f(m) (3.12)
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for all m. If T = 2k is even, then for all sufficiently large m,

f(2m+ 2k + 1) ≡ f(2m+ 1) (mod d) =⇒
f(m+ k) ≡ f(m) (mod d),

(3.13)

violating the minimality of T , since k = T/2.
If T = 2k + 1 is odd, then for all sufficiently large m,

f(2m+ 2k + 2) ≡ f(2m+ 1) (mod d) =⇒
f(m+ k + 1) + f(m+ k) ≡ f(m) (mod d),

(3.14)

and
f(2m+ 2k + 3) ≡ f(2m+ 2) (mod d) =⇒
f(m+ k + 1) ≡ f(m) + f(m+ 1) (mod d).

(3.15)

Together, these imply that for all sufficiently large m,

f(m+ k) ≡ −f(m+ 1) (mod d) =⇒
f(m+ 1) ≡ f(m+ 1 + (2k − 1)) (mod d),

(3.16)

which implies that f has a period of 2k−2. If k > 1, then 0 < 2k−2 < 2k+1
gives a contradiction. If k = 1, then T = 3.

We now show that d = 2. First, f(2r − 1) = f(2r−1 − 1) and so by
induction, f(2r − 1) = f(1) = 1. Thus, f(2r) = f(2r−1) + f(2r−1 − 1) =
f(2r−1) + 1 and so by induction, f(2r) = r + 1, implying that f(2r + 1) =
f(2r−1) = r and f(2r+2) = f(2r−1)+f(2r−1 +1) = r+r−1. Thus, d divides
each f(2r + 2) − f(2r − 1) = 2r − 1 − 1 for sufficiently large r. Therefore,
d = 2. �

Proof of Theorem 1.3(2). Suppose A = {0, 1} and b ≥ 3. Then f(n) :=
fA,b(n) = 1 if n is a sum of distinct powers of b, and 0 otherwise. Suppose
that for n > U ,

f(n+ T ) ≡ f(n) (mod d) (3.17)
and d ≥ 2. Then, f(m) ∈ {0, 1} implies that f(n + T ) = f(n). Choose j
so large that bj > T,U and suppose that f satisfies (3.17). Then f(bj) = 1,
hence f(bj + T ) = 1, and so T =

∑
k b

rk with distinct rk < j. But then
f(bj + 2T ) = 1 by periodicity, and so bj + 2

∑
k b

rk must be also a sum
of distinct powers of b, violating the uniqueness of the (standard) base-b
representation. �

4. Examples

Example 4.1. The periodicity of fAd,2(n) was established in [10], motivated
by the interpretation of the Stern sequence. In her dissertation, Dennison [6]
studied a variation on the Stern sequence defined by flipping the recurrence
(1.11) to a two-parameter family of sequences. The periodicities discovered
in [6] for A = {0, 1, 3} and A = {0, 2, 3} led Reznick to suggest that Anders
and Weber Lansing look at generalizations as the topic for their 2010 summer
research project [1].
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For α, β ∈ C, define bα,β(n) by

bα,β(1) = α, bα,β(2) = β,

bα,β(2n) = bα,β(n) + bα,β(n+ 1) for n ≥ 2,

bα,β(2n+ 1) = bα,β(n) for n ≥ 1.
(4.1)

(In order for the recurrence to be unambiguous, it cannot be applied to
bα,β(2); the value of bα,β(0) plays no further role.) It is proved in [6] that
b0,1(n+ 2) = f{0,2,3},2(n) for n ≥ 0. It was also proved there by an argument
similar to the proof of Theorem 3.1 that b0,1(n) ≡ b0,1(n + 7) mod 2, and
is odd when n ≡ 0, 2, 3, 4 (mod 7). This suggested looking at f{0,1,3},2(n),
which is also periodic with period 7, and is odd when n ≡ 0, 1, 2, 4 (mod 7).

The proofs of these facts are now straightforward in view of Theorem
1.1; we have in F2(x):

F{0,2,3}(x) =
1

1 + x2 + x3
=

(1 + x+ x3)(1 + x)
1 + x7

=
1 + x2 + x3 + x4

1 + x7
;

F{0,1,3}(x) =
1

1 + x+ x3
=

(1 + x2 + x3)(1 + x)
1 + x7

=
1 + x+ x2 + x4

1 + x7
.

Thus, {0, 2, 3}′ = {0, 2, 3, 4} and {0, 1, 3}′ = {0, 1, 2, 4}.

Example 4.2. For r ≥ 2, define the sets Ar = {0, 1, 2, . . . , 2r} and Br =
{0, 1, 3, . . . , 2r − 1}, and let gr = φAr

and hr = φBr
for short. Then gr(x) =

1 + xhr(x), so in F2[x],

gr(x)hr(x) = hr(x) + xh2
r(x) = hr(x) + xhr(x2) =

1 +
r∑
`=1

x2`−1 + x+
r∑
`=1

x2`+1−2+1 = 1 + x2r+1−1.
(4.2)

This in itself does not establish that Ar,Br are complementary, or that they
both have period 2r+1−1. If either period T were a proper factor of 2r+1−1,
then since T is odd, T ≤ 1

3 (2r+1− 1) < 2r − 1 < 2r, a contradiction. Thus gr
and hr each have period 2r+1 − 1.

We may interpret this result combinatorially: fAr,2(n) is the number of
ways to write

n =
∞∑
i=0

εi2i+ki , (4.3)

where εi ∈ {0, 1} and 0 ≤ ki ≤ r, and fAr,2(n) is even, except when there
exists ` < r so that n ≡ 2` − 1 (mod 2r+1 − 1). The infinite version of this
example can be found in [5, §5].

Example 4.3. We return to A = {0, 1, 4, 9}; in F2[x],

φA(x) = 1 + x+ x4 + x9 = (1 + x)4(1 + x+ x2)(1 + x2 + x3). (4.4)

Note that 1+x has period 1, 1+x+x2 has period 3, and we have already seen
that 1 + x+ x3 has period 7. Since the maximum exponent in (4.4) is ≤ 22,
Lemma 2.1 implies that the period of A divides 4 · lcm(1, 3, 7) = 84. Another



Congruence properties of binary partition functions 11

calculation shows that φA(x) does not divide 1+x
84
p for p = 2, 3, 7, and so 84

is actually the period. A computation shows that A′ = {0, 1, 2, 3, . . . , 70, 75}
has 41 terms, as noted earlier. Thus fA(n) is odd 41

84 of the time and even 43
84

of the time. The infinite version of this example can be found in [5, §6.1].

Example 4.4. Although Theorem 1.1 does not generalize to all A if (b, d) 6=
(2, 2), there are a few exceptional cases. Problem B2 on the 1983 Putnam [7]
in effect asked for a proof that for A = {0, 1, 2, 3},

fA,2(n) =
⌊n

2

⌋
+ 1. (4.5)

This can be seen directly from (1.4), since φA,2(x) = (1 + x)(1 + x2) =
1−x4

1−x , hence FA,2(x) telescopes to 1
(1−x)(1−x2) . It follows immediately that

fA,2(n+ 2d) = fA,2(n) + d, and hence fA,2 is periodic mod d with period 2d,
for each d ≥ 2. A similar phenomenon occurs for Ab = {0, 1, . . . , b2 − 1}, so

that φAb,b(x) = 1−xb2

1−x and FAb,b(x) = 1
(1−x)(1−xb)

, implying that fAb,b(n) =
bnb c+ 1 and fAb,b(n+ bd) = fAb,b(n) + d.

Example 4.5. Let A = {0} ∪ (2N + 1) (all non-zero digits in (1.1) are odd).
Then

φA(x) = 1 +
∞∑
i=0

x2i+1 = 1 +
x

1− x2
=

1 + x− x2

1− x2
. (4.6)

Working in F2(x), we have

FA,2(x) =
1− x2

1 + x− x2
=

(1 + x)2

1 + x+ x2
= 1 +

x

1 + x+ x2
= 1 +

x+ x2

1 + x3
. (4.7)

Thus, fA,2(n) is odd if and only if n = 0 or n is not a multiple of 3.

Example 4.6. Let A{k} := N \ {k}. By Theorem 1.1,

φA{k} =
1

1 + x
− xk =

1− xk − xk+1

1 + x

=⇒ FA{k}(x) =
1 + x

1 + xk + xk+1

=⇒ FA{1}(x) =
1 + x

1 + x+ x2
=

(1 + x)2

1 + x3
=

1 + x2

1 + x3
.

(4.8)

Thus fN\{1},2(n) is odd precisely when n ≡ 0, 2 (mod 3). This may be con-
trasted with f{0,1,2},2(n), which is odd precisely when n ≡ 0, 1 (mod 3).
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STERN NOTES, CHAPTER 8 (FIRST DRAFT)

BRUCE REZNICK, UIUC

1. Generalizations

The generalizations of any mathematical object are limited only by semantics and
the imagination. We are interested here in presenting some situations which can be
specialized to the Stern sequence and which preserve some of its properties.

Here is one which keeps the binary nature. Define two functions

(1) f : C → C, g : C
2 → C,

and define the sequence (an) by

(2) a2n = f(an), a2n+1 = g(an, an+1), n ≥ 1,

with (a0, a1) to be determined as initial conditions. If we now define L, R : C
2 → C

2

by

(3) L(u, v) := (f(u), g(u, v)), R(u, v) := (g(u, v), f(v)),

then the fundamental dyadic nature of the Stern sequence is preserved, inasmuch as

(4) (a2n, a2n+1) = L(an, an+1), (a2n+1, a2n+2) = R(an, an+1)

The value of an is determined by encoding the binary representation of n into a word
of operators taken from the alphabet {L, R}, as applied to the initial conditions. This
is nice as far as it goes, but probably too general to be very interesting.

If we assume that f and g are linear; specifically,

(5) a2n = αan, a2n+1 = βan + γan+1,

then so are L and R, and we can copy a picture from the early notes: the mappings
of the consecutive pairs has the repeated pattern

(6)

[

x
y

]

ւ ց

L

[

x
y

]

R

[

x
y

]

where

(7) L =

[

α 0
β γ

]

, R =

[

β γ
0 α

]

.

1
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The analysis of this situation depends on the semigroup of 2×2 matrices generated by
L and R. The most interesting cases would seem to occur when all entries are roots
of unity. Even this appears to have too many cases to support a unifying analysis.

We shall discuss here two somewhat more restrictive generalizations of the Stern
sequence. In the first, we define the sequence by its power series and work backwards
to find the recurrence. For α, β ∈ C, let

(8) Φα,β(X) :=
∞

∑

n=0

aα,β(n)Xn = X

∞
∏

j=0

(1 + αX2j

+ βX2j+1

).

By the same reasoning as before, aα,β(0) = 0 and, for n ≥ 1,

(9) aα,β(n) =
∑

r,s≥0

cr,s(n)αrβs,

where cr,s(n) is the number of ways to write

(10) n − 1 =
∞

∑

j=0

ǫj2
j, ǫj ∈ {0, 1, 2},

using exactly r 1’s and s 2’s.
To find the recurrence, observe that

(11)

(1 + αX + βX2)Φα,β(X2) = XΦα,β(X)

=⇒ (1 + αX + βX2)
∞

∑

n=0

aα,β(n)X2n = X
∞

∑

n=0

aα,β(n)Xn

=⇒ aα,β(2n) = αaα,β(n), aα,β(2n + 1) = βaα,β(n) + 1 · aα,β(n + 1).

In other words, this is (5) in the case that γ = 1. (Of course, if we set α = β = 1,
we recover the Stern sequence.) If γ 6= 1, we have neither a reasonable power series
factorization, nor a reasonable combinatorial interpretation.

The second general class in which we can say something is when we can retain part
of the diatomic array structure by taking α = 1. Consider

(12)

a b

a βa + γb b

a βa + γ(βa + γb) βa + γb β(βa + γb) + γb b

· · ·
More formally, let Z(r, k) = Z(r, k; a, b; β, γ) for r ≥ 0 and 0 ≤ k ≤ 2r be defined by:

(13)

Z(0, 0) = a, Z(0, 1) = b;

Z(r, 2k) = Z(r − 1, k), for r ≥ 1;

Z(r, 2k + 1) = βZ(r − 1, k) + γZ(r − 1, k + 1), for r ≥ 1.
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As with the simpler diatomic array, the entries are still linear in the initial con-
ditions and have the same self-similarity, but the mirror condition flips the new
parameters as well:

(14) Z(r, k; a, b; β, γ) = Z(r, 2r − k; b, a; γ, β).

This is important as we look for the “eigenarrays” that reduce the analysis of that
array to a sequence.

First observe that if βa + γb = b, then Z(0, 1) = Z(1, 1), and as before, this means
that the rows of the array will nest, with the first half of each reproducing the previous
row. We can realize this by taking (a, b) = (1 − γ, β), so that the first few rows of
the array are

(15)

1 − γ β

1 − γ β β

1 − γ β β β2 + βγ β

· · ·
If β = γ = 1, this recovers the standard Stern array. In any case, the underlying
sequence is given by:

(16)
tβ,γ(0) = 1 − γ, tβ,γ(1) = β;

tβ,γ(2n) = tβ,γ(n), tβ,γ(2n + 1) = βtβ,γ(n) + γtβ,γ(n + 1).

The eigenarray is trivially zero only if β = 0 and γ = 1, but the analysis of
Z(r, k; a, b; 0, 1) is also trivial: Z(r, 0) = a and Z(r, k) = b for k ≥ 1. This gives
what might be called the forward eigenarray. Eventually, we’ll give a closed formula,
but not in these notes. (It probably makes sense to divide by β.)

The backward eigenarray comes from solving βa + γb = a; so that we might take
(a, b) = (γ, 1 − β):

(17)

γ 1 − β

γ γ 1 − β

γ βγ + γ2 γ γ 1 − β

· · ·
This nests from the right, not the left, and again, with β = γ = 1, is familiar in the
Stern situation as the reversal of the basic array.

The mirror symmetry connection of these two eigenarrays is clear and will not be
elaborated on. We remark that (1 − γ, β) and (γ, 1 − β) are linearly independent
unless β + γ = 1, in which case an alternate approach is useful.

In the rest of this section, we shall discuss three specific cases:

(1) Hellinger’s Function: Z(r, k; a, b, 1 − p, p);
(2) Stern Polynomials: S(0; λ) = 0, S(1; λ) = 1 and S(2n; λ) = λS(n; λ) and

S(2n + 1; λ) = S(n; λ) + S(n + 1; λ);
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(3) The sullen cousin (name subject to change) : w(0) = 0, w(1) = 1 and w(2n) =
w(n) and w(2n + 1) = w(n + 1) − w(n).

The labeling of these sequences is inconsistent and ought to be corrected in the
“second edition”. I will also refer to class handouts in some cases without directly
putting them in.

2. Hellinger’s function

In this section we discuss the arrays Z(r, k; a, b, β, γ) with β + γ = 1. For reasons
that will become clear, it is sensible to write β = 1 − p and γ = p. It follows from
linearity that

(18) Z(r, k; a, b; 1 − p, p) = aZ(r, k; 1, 1; 1 − p, p) + (b − a)Z(r, k; 0, 1; 1 − p, p),

and it is trivial to verify that for all (r, k),

(19) Z(r, k; 1, 1; 1 − p, p) = 1.

This leaves Z(r, k; 0, 1; 1 − p, p), for which we give the first few rows:

(20)

0 1

0 p 1

0 p2 p 2p − p2 1

0 p3 p2 2p2 − p3 p p + p2 − p3 2p − p2 3p − 3p2 + p3 1

· · ·
At this point it makes sense to exploit the recurrence and explicitly define a family
of functions fp : [0, 1] → C by

(21) fp

(

k

2r

)

:= Z(r, k; 0, 1; 1 − p, p).

This is well-defined, as we have seen in other cases, because k
2r = 2k

2r+1 , and the
recurrence gives

(22) fp

(

2k + 1

2r+1

)

= (1 − p)fp

(

k

2r

)

+ pfp

(

k + 1

2r

)

.

Furthermore, the self-similarity gives for 0 ≤ k ≤ 2r:

(23)

Z(r + 1, k; 0, 1; 1 − p, p) = Z(r, k; 0, p; 1 − p, p)

=⇒ fp

(

k

2r+1

)

= p · fp

(

k

2r

)

;

Z(r + 1, 2r + k; 0, 1; 1 − p, p) = Z(r, k; p, 1; 1 − p, p)

= Z(r, k; p, p; 1 − p, p) + Z(r, k; 0, 1 − p; 1 − p, p) =⇒

fp

(

2r + k

2r+1

)

= p + (1 − p) · fp

(

k

2r

)

.
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In other words, for dyadic x ∈ [0, 1], we have

(24) fp

(x

2

)

= pfp(x); fp

(

1 + x

2

)

= p + (1 − p)fp(x).

It is a routine exercise to prove by induction that

(25) fp

(

k + 1

2r

)

− fp

(

k

2r

)

= pr−a(1 − p)a,

where a is the number of 1’s in the binary expansion of k. Thus, for example, in the
third row of the array, the differences are, in order

(26) p3, p2(1 − p), p2(1 − p), p(1 − p)2, p2(1 − p), p(1 − p)2, p(1 − p)2, (1 − p)3.

In the special case that p ∈ (0, 1), the preceding argument is enough to show that
fp extends to a continuous strictly increasing function from [0, 1] to itself, which is
singular for p 6= 1

2
. In this case, there is also a probabilistic interpretation. Consider a

game in which you start with x ∈ [0, 1] units and are allowed to bet y ≤ max{x, 1−x}
units, with the goal of reaching “1”, and loss if you hit “0”. With probability p you
win, and have x + y units, and with probability 1− p you lose, and have x− y units.
The “bold” strategy (a technical term) is to bet x when you have x ≤ 1

2
and to bet

1− x when you have x ≥ 1
2
. (This is the optimal strategy for reaching “1”, if p < 1

2
.)

In this case, reference to equation (24) shows that the probability of victory starting
with x units is exactly fp(x).

For 0 ≤ j ≤ r, let

(27) Aj,r = {2i1 + · · · + 2ij : r − 1 ≥ i1 > · · · > ij ≥ 0}
be the integers in [0, 2r − 1] with j 1’s in their binary expansions. We then have

(28) ∆j,r :=
∑

k∈Aj,r

(

fp

(

k + 1

2r

)

− fp

(

k

2r

))

=

(

r

j

)

pr−j(1 − p)j.

It follows from the Law of Large Numbers that this increase is concentrated on Aj,r

where j ≈ r(1 − p). In fact, it can be proved that the measure dfp determined by fp

is supported on those x ∈ [0, 1] for which the density of 1’s in its dyadic expansion
is 1 − p. If p 6= 1

2
, this set has measure zero and if p1 6= p2, the corresponding sets

of support are disjoint. There is a fair bit of literature on this topic, and references
will show up in the later versions. In particular, the first person to have studied it
appears to have been Ernst Hellinger.

3. Stern polynomials

We define the Stern polynomials by

(29)
S(0; λ) = 0, S(1; λ) = 1,

S(2n; λ) = λS(n; λ), S(2n + 1; λ) = S(n; λ) + S(n + 1; λ).
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This is (5) with α = λ, β = γ = 1, and so has the generating function

(30) S(X; λ) :=
∞

∑

n=0

S(n; λ)Xn = X

∞
∏

j=0

(1 + λX2j

+ X2j+1

).

These polynomials can be explicitly evaluated for several values of λ. Of course,
S(n; 1) = s(n). We have already seen that

(31) S(3n;−1) = 0, S(3n + 1;−1) = 1, S(3n + 2;−1) = −1,

and two easy inductions (or an appeal to the generating function) show that

(32) S(2n; 0) = 0, S(2n + 1; 0) = 1

and

(33) S(n; 2) = n.

This last identity implies that the S(n, λ)’s are distinct for distinct n.
The Stern polynomials satisfy many identities which might be considered the “ex-

planation” for identities satisfied by the Stern sequence. For example, it is easy to
show by induction that for 0 ≤ k ≤ 2r,

(34) S(2rn ± k; λ) = S(2r − k; λ)S(n; λ) + S(k; λ)S(n ± 1; λ).

It may be more helpful in understanding this to note the analogy to the Stern se-
quence: the Stern polynomials can be construed as coming from a modified diatomic
array in which consecutive terms are added, but the previous row is multiplied by λ
before coming down.

(35)

a b

λa a + b λb

λ2a (1 + λ)a + b λ(a + b) a + (1 + λ)b λ2b

· · ·
As before, if (a, b) = (S(n; λ), S(n+1; λ)), then the r-th row above lists S(2rn+k; λ)
for 0 ≤ k ≤ 2r.

It is also easy to prove by induction that

(36) S(2r − 1; λ) = 1 + λ + · · · + λr−1 := (λ)r.

(We view (λ)r ∈ Z[λ]; if it is to be evaluated at λ = 1, we simply replace it by r.)
Thus, we have the following specializations of (33):

(37) S(2rn ± 1; λ) = (λ)r · S(n; λ) + S(n ± 1; λ).

Another family of identities generalizes. Let tn = 2n−(−1)n

3
; then as we have previ-

ously seen, tn = 2tn−1 − (−1)n = tn−1 + 2tn−2. This implies that

(38) S(tn; λ) = S(tn−1; λ) + S(2tn−2; λ) = S(tn−1; λ) + λS(tn−2; λ).
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For fixed λ, this is a linear recurrence with characteristic equation X2 − X − λ, and
since S(t0; λ) = 0 and S(t1; λ) = 1, we obtain a closed form. If λ 6= −1

4
, then

(39) S(tn; λ) =
1√

1 + 4λ

(

(

1 +
√

1 + 4λ

2

)n

−
(

1 +
√

1 − 4λ

2

)n
)

,

and S(tn;−1
4
) = n

2n−1 . (In this case the characteristic equation has a double root.)
One of my favorite Stern identities generalizes:

(40)

S((2r − 1)2; λ) = S(2r+1(2r−1 − 1) + 1; λ) = (λ)r+1(λ)r−1 + 1 · λr−1

=
(1 − λr+1)(1 − λr−1) + λr−1(1 − λ)2

(1 − λ)2
=

(1 − λr)2

(1 − λ)2
= S(2r − 1; λ)2.

Since

(41) S(2rn ± n; λ) = S(n; λ)(S(2r − n; λ) + S(n ± 1; λ)),

it follows that each S(n; λ) is a factor of infinitely many other ones. (We won’t prove
it here, but this is also true for S(n; λ)k, where k is any positive integer.)

There are two closed forms for S(n; λ). Both are based on assuming that n is
odd. We have previously written n ∼ [a1, . . . , a2v+1] to indicate that the binary
representation of n consists of a1 1’s, a2 0’s, a3 1’s, etc. It is convenient for the first
case to say that n = [[a1, . . . , at]] is defined recursively by:

(42) [[a]] = 2a − 1; [[a1, . . . , at]] = 2a1+···+at − [[a2, . . . , at]]

If t = 2v + 1 is odd, then [[a1, . . . , a2v+1]] ∼ [a1, . . . , a2v+1], but t could be even.

Theorem 1. Using the preceding notations, if n = [[a1, . . . , at]] and r =
∑

ti, then

(43)

S(n; λ)

S(2r − n; λ)
=

S([[a1, . . . , at]]; λ)

S([[a2, . . . , at]]; λ)
= (λ)a1

+
λa1

(λ)a2
+

λa2

· · · + λat−1

(λ)at

.

Proof. The first inductive step is for t = 1. If n = [[a]] = 2a − 1, then 2r − n = 1,
and, indeed,

(44)
S(n; λ)

S(2r − n; λ)
=

S(2a − 1; λ)

S(1; λ)
= (λ)a.

For t = 2, we have 2a+b − 2b + 1 = 2b(2a − 1) + 1, so that

(45)

S([[a, b]]; λ)

S([[b]]; λ)
=

S(2a+b − 2b + 1; λ)

S(2b − 1; λ)

=
S(2b − 1; λ)S(2a − 1; λ) + S(1; λ)S(2a; λ)

S(2b − 1; λ)
= (λ)a +

λa

(λ)b

,

as desired.
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Now assume the inductive hypothesis, let n∗ = 2r − n and n∗∗ = 2r−a1 − n∗. Then

(46) n = 2r − 2r−a1 + n∗∗ = 2r−a1(2a1 − 1) + n∗∗.

It follows that

(47)
S(n; λ) = S(2r−a1 − n∗∗; λ)S(2a1 − 1; λ) + S(n∗∗; λ)S(2a1 ; λ)

= (λ)a1
S(n∗; λ) + λa1S(n∗∗; λ),

and so,

(48)
S(n; λ)

S(n∗; λ)
= (λ)a1

+
λa1

S(n∗; λ)

S(n∗∗; λ)

,

as is needed to complete the induction. ¤

Of course, if λ = 1, then (λ)a = a, and this reduces to one of the formulas earlier
in the notes, from the Brocot array.

The second formula is both more familiar and considerably messier, and we omit
the proof. Let

(49) [λ]a := λ−a(λ)a;

once again, for λ = 1, this reduces to a, and we have to omit λ = 0. We again write
n ∼ [a1, . . . , a2v+1]:

(50)
S(n; λ)

S(n + 1; λ)
= [λ]a2t+1

+
λ−a2t+1

[λ]a2t
+

λ−a2t

· · · + λ−a2

[λ]a1

.

This gives S(n; λ) and S(n+1; λ), once the negative powers of λ have been cancelled
out. We remark in support of this formula that

(51)
S(2a − 1; λ)

S(2a; λ)
=

(λ)a

λa
.

and, as in (45) above,

(52) S(2a+b − 2b + 1; λ) = S(2b(2a − 1) + 1; λ) = (λ)b(λ)a + λa

Further, 2a+b+c − 2b+c + 2c − 1 ∼ [a, b, c]. We note that

(53) S(2a+b+c − 2b+c + 2c; λ) = λcS(2b(2a − 1) + 1; λ)

and

(54)

S(2a+b+c − 2b+c + 2c − 1; λ) = S(2c(2a+b − 2b + 1) − 1; λ)

= (λ)cS(2a+b − 2b + 1; λ) + S(2a+b − 2b; λ)

= (λ)cS(2a+b − 2b + 1; λ) + λb(λ)a.
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Thus,

(55)

S(2a+b+c − 2b+c + 2c − 1; λ)

S(2a+b+c − 2b+c + 2c; λ)
=

(λ)cS(2a+b − 2b + 1; λ) + λb(λ)a

λcS(2a+b − 2b + 1; λ)

= λ−c(λ)c +
λ−c

S(2a+b − 2b + 1; λ)

λb(λ)a

=

λ−c(λ)c +
λ−c

(λ)b(λ)a + λa

λb(λ)a

= λ−c(λ)c +
λ−c

λ−b(λ)b +
λ−b

λ−a(λ)a

.

The general proof runs much the same way.
It is easy to show that gcd(S(n; λ), S(n + 1; λ)) = 1, but this is less impressive for

polynomials than it is for integers.
For n ≥ 1, let

(56) d(n) := deg(S(n; λ)).

Since all coefficients of S(n; λ) are non-negative integers, there can be no cancella-
tion of the leading terms when two Stern polynomials are added. Thus it follows
immediately from the recurrence that

(57) d(2n) = d(n) + 1, d(2n ± 1) = max{d(n), d(n ± 1)}
Lemma 2. For n ≥ 1, we have d(n + 1) − d(n) ∈ {−1, 0, 1}.
Proof. As the distributed tables show, this is true for small n. Suppose it is true
inductively, and d(n) = d, say. Then d(n ± 1) = d − 1, d or d + 1 by the inductive
hypothesis, so that d(2n) = d + 1 and d(2n± 1) = d, d or d + 1, respectively, and the
proof is complete. ¤

Lemma 3. For all n ≥ 1, d(4n ± 1) = d(n) + 1.

Proof. By the recurrence, we have

(58) S(4n ± 1; λ) = (1 + λ)S(n; λ) + S(n + 1; λ),

and since deg((1 + λ)S(n; λ)) = 1 + d(n) ≥ d(n + 1), we are done. ¤

Now let D(d) := {n : d(n) = d} be the set of Stern polynomials of degree d.

Theorem 4.

(59) |D(d)| = 3d,
∑

n∈D(d)

n = 10d.

Proof. We first observe that D(0) = {1}, and then note that by the last lemma,
each n ∈ D(d) induces 2n, 4n − 1, 4n + 1 ∈ D(d + 1). Since every integer m can be
expressed as exactly one of {2n, 4n − 1, 4n + 1}, all cases are accounted for. ¤



10 BRUCE REZNICK, UIUC

The most strikingly interesting fact about the Stern polynomials is the fractal-like
nature of its zero set, as shown in a handout. Let

(60) Z := {λ ∈ C : S(n; λ) = 0 for some n}.
Theorem 5. The set Z contains the unit circle and the interval (−∞,−1

4
].

Proof. The first assertion follows from the fact that every root of unity ζ = e2πik/r 6= 1
is a root of S(2r − 1, λ). (It is a bit counterintuitive that 1 ∈ Z, to be sure.)

For the second, we use the formula for S(tn; λ). We have seen that S(tn;−1
4
) > 0

for n ≥ 1 and that for λ 6= −1
4
, with

(61) ζn = e
2πi
n ,

(62)

S(tn; λ) = 0 ⇐⇒
(

1 +
√

1 + 4λ

2

)n

=

(

1 +
√

1 − 4λ

2

)n

⇐⇒ 1 +
√

1 + 4λ = ζk
n(1 −

√
1 + 4λ) ⇐⇒

√
1 + 4λ =

ζk
n − 1

ζk
n + 1

,

with the understanding that ζk
n 6= 1 (because λ 6= −1

4
) and ζk

n 6= −1 (because λ ∈ C).
A bit of algebra shows that

(63)
√

1 + 4λ =
ξ − 1

ξ + 1
⇐⇒ 1 + 4λ =

1 − 2ξ + ξ2

1 + 2ξ + ξ2
⇐⇒ λ =

−1

ξ + 2 + ξ−1

In particular, with ξ = ζk
n, we have

(64) λ =
−1

2 + 2 cos(2kπ
n

)
=

−1

4 cos2(kπ
n

)
.

The restriction ξ 6= −1, 1 implies that cos2(kπ
n

) 6= 0, 1. For n ∈ N, the union of the

points {ζk
n} is dense in the unit circle, and so the roots of S(tn; λ) are dense in the

real interval [−∞,−1
4
]. ¤

4. Stern’s sullen cousin

Finally, we collect some information about the sequence (wn), defined by

(65) w(0) = 0, w(1) = 1, w(2n) = w(n), w(2n + 1) = w(n + 1) − w(n).

I call this the sullen cousin, because none of the proofs are exciting (so far).
The previous techniques combine to show that the generating function is

(66) W (X) :=
∞

∑

n=0

w(n)Xn = X

∞
∏

j=0

(1 + X2j − X2j+1

),

so that w(n) is the number of representations (10) with an even number of 2’s, minus
the number with an odd number of 2’s. It follows immediatedly that

(67) |w(n)| ≤ s(n),
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and this can be seen on the class handout. The associated diatomic array shows some
interesting patterns:

(68)

a b

a b − a b

a b − 2a b − a a b

· · ·
As before, if the first row is (w(m), w(m + 1)), then the r-th row will be

(69) w(2rm), ..., w(2rm + 2r).

Since w(2) = 1 and w(3) = 0, this array can be used to prove a peculiar addition
formula for 0 ≤ k ≤ 2r. We turn the proofs of the remaining properties into homework
problems!

Lemma 6. If 0 ≤ k ≤ 2r, then

(70) w(2rm + k) = w(2 · 2r + k)w(m) + w(k)w(m + 1).

An immediate consequence is the following:

Lemma 7. If w(m) = w(m′) and w(m + 1) = w(m′ + 1), then w(2rm + k) =
w(2rm′ + k).

Observe that w(4n+3) = w(2n+2)−w(2n+1) = w(n+1)−(w(n+1)−w(n)) = w(n)
and w(4n + 4) = w(n + 1). Thus, for each n, n′ = 4n + 3 satisfies the hypotheses of
the lemma. An almost immediate consequence of this is

Theorem 8. If n′ is derived from n by the deletion (or addition) of two consecutive

“1”’s in its binary expansion, then w(n) = w(n′).

Corollary 9. If, in the binary expansion of n, “1”’s occur only in blocks of even

length, then w(n) = 0. (In fact, this is an “if and only if” result.)

In view of the preceding results, it suffices to find a closed formula for w(n) when
the binary expansion of n does not have consecutive 1’s. For this reason, we consider

(71) n ∼ [1, b1, 1, . . . , bt, 1] :=]b1, . . . , bt[.

Put recursively,

(72) ]b[= 2b+1 + 1; ]b1, . . . , bt[= 2bt+1]b1, . . . , bt−1[+1.

Theorem 10. In the preceding notation, we have

(73) w(]b1, . . . , bt[) = pt(−b1, . . . , bt) = (−1)tpt(b1, . . . , bt).

Here, we return to the continuant notation from earlier in the semester. This
formula has some interesting consequences. Let d2(n) be the sum of the binary digits
of n. Then
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Corollary 11. If d2(n) is even, then w(n) ≥ 1; if d2(n) is odd, then w(n) ≤ 0. In

particular, exactly one of {w(2n), w(2n + 1)} is ≥ 1 and the other is ≤ 0.

It is certainly the case that gcd(w(n), w(n+1)) = 1 for all n, but it’s clear from this
that not all pairs of relatively prime integers occur. A relevant fact in this direction
is:

Theorem 12. For all n, if w(n) 6= 0, then

(74)
w(n + 1)

w(n)
≤ 1.

One can also parallel the summation formulas for the Stern sequence and show
that

Lemma 13. For r ≥ 1,

(75)

2r+1−1
∑

n=2r

w(n) = 1,

2r+1−1
∑

n=2r

|w(n)| =
(1 +

√
2)n + (1 −

√
2)n

2
,

2r+1−1
∑

n=2r

w(n)2 = 3r−1.

Further, if

(76)
2r+1−1
∑

n=2r

w(n)3 = cr,

then cr = 3cr−1 − 4cr−2 − 4cr−3. (The exact formula for cr involves roots of an

irreducible cubic.)

We also showed in class using elementary estimates that

Theorem 14. As a complex function, W (z) is bounded as z = x → 1−.

Finally, we remark that my 1985 paper Some extremal problems for continued

fractions contains a theorem equivalent to the assertion that, if 2r ≤ n ≤ 2r+1, then

(77) |w(r)| ≤
(

3 +
√

13

2

)r/4

≈ 1.348r,

and this is best possible.
Much of the description of the Stern sequence can be carried over to its sullen

cousin. Usually, it isn’t quite as interesting, but I hope to have more to say in the
next iteration of these notes.
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