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ABSTRACT

CONTRIBUTIONS TO THE PROOF THEORY 

OF HYPERGEOMETRIC IDENTITIES

Lily Y en 

Herbert S. Wilf

In 1992 Wilf and Zeilberger introduced the following terminology: A hypergeometric 

term  is a function F{ k i , k 2 ,. . . , k r )  such that, for aU i G {1,2,... ,r}, the ratio

F ( k i , . . . , kj-. i ,k{ +  1, . . . , kr)
F { k i , . . . , k r )

is a rational function in all the variables. They also introduced the rather technical concept 

of admissible proper-hypergeometric terms; “most interesting” hypergeometric terms are 

admissible and proper.

We prove the following: Given an integer tiq and an admissible proper-hypergeomet- 

ric term F{n,k) ,  there exists a pre-computable integer ni such that if = 1

for no < n < t i l , then Y k  1 for all n >  no- Moreover, an a priori upper

bound is given for ni .  This allows us to prove many hypergeometric identities by simply 

checking a finite (albeit large) number of initial values. With similar methods, we show 

explicit a priori upper bounds for ni in the cases -where Y k H ^ ^ ^ )  = /(«) (for some 

hypergeometric term /(n)) and Y k  F{ n, k)  =  Y k  G{n,k)  (for some admissible proper-hy- 

pergeometric term G(n,  k)) are the objects of interest. Finally, we generalize the above 

statement to the case of Y k ,  Y k ^ ' - ’ Yk^ F ( n , k i , k 2 , . . .  ,kr)  =  1.
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INTRODUCTION

The study of ordinary and partial differential equations led to the investigation of special 

functions, those bearing the names of Gauss, Hermite, Jacobi, Laguerre and Legendre. 

Therefore, Askey [As3] defined special functions as “functions that occur often enough to 

merit a name”. Most special functions are expressible as hypergeometric series, i.e. a series

ratio ak+i /dk of consecutive terms is a rational function of k. For 

example, the Hermite polynomials

(Hermite)

has dk+i lak = -(n  -  2k){n - 2 k  -  l)/(4a;^(fc + 1)); the Laguerre polynomials

(Laguerre) n + a \  (—x)^
k!

has Uk+i/ck =  ( n -  k ) ( - x ) / ( ( a  + A: + l ){k +  1)); the Legendre polynomials

■ ■ = - E (”) (--!)'=(- + ir— k(Legendre)

has dk+i lak — {n — k) ‘̂ {x -  l)/((a; + 1)(A: + 1) )̂; and the general Jacobi polynomials

(Jacobi)

has

Ofc+i _  (a; + l)(n + o + l)(n + /? + 1) 
ttfc { n - k  +  l ) {n +  ^ -  k +  1)

1
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The first hypergeometric series that rose to fame and became the hypergeometric series 

of the 19th century was the 2 -fi, often called the Gaussian hypergeometric, for Gauss in his 

doctoral dissertation of 1812 [Gau] presented a thorough investigation of the series. Prior 

to Gauss, Euler [E] and Pfaff'[Pf] also discovered many remarkable properties of 2 Pi. The 

study of hypergeometric series became so important that W. W. Sawyer once remarked 

[S] “There must be many universities today where 95 per cent, if not 100 per cent, of the 

functipns studied by physics, engineering, and even mathematics students, are covered by 

this single symbol F {a ,b ;c \x ) [i. e. 2 P1 ].”

In 1870, 2 P1 was generalized to mFn-

Definition. [GKP, p. 205] The general hypergeometric series is a power series in z with 

m  +  n parameters, and it is defined as follows in terms'of rising factorial powers:

„ k  „k  ^ k ,
••0‘m ^

5* ftp kl ’fc>0

where o*' (also denoted by (a)*) := a(a + l)(a + 2)... (a + A: — 1). To avoid division by zero, 

none of the 6’s may be zero or a negative integer. Other than that, the o’s and 6’s may be 

anything. The a’s are said to be upper parameters, and the 6’s are lower parameters. The 

last quantity z  is called the argument.

We should note that most literature about hypergeometric series uses the notation in 

the definition. Sometimes, a one-line notation ‘E (a i,. . .  , am] b i , . . . ,  bn; 2 )’ is also used (as 

in Sawyer’s remark). However, Graham, Knuth and Patashnik do not have subscripts m 

and n around F  in [GKP] because it is clear how many parameters are upper and lower

p n
a\, . . . , Ujn

b i , . . .  ,bn

parameters.
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We are now witnessing a fast comeback of special functions and their associated hyperge- 

ometric series. Moreover, the g-analogues of special functions and hypergeometric series, 

called 9 -series hajVe proved to be very useful in number theory, combinatorics, physics, 

group theory, [An5] and other areas of science and mathematics.

Andrews in 1974 [Anl] first pointed out the great relevance of hypergeometric series 

to binomial coefficient identities. Indeed, special functions and hypergeometric series sat

isfy many identities, most of which involve binomial coefficients. We quote the following 

paragraph from [WZ4, p. 148 f2].

There are countless identities relating special functions (e.g., [PBM, R, An5,

Asl]. In addition to their intrinsic interest, some of them imply important prop

erties of these special functions, which in turn sometimes imply deep theorems 

elsewhere in mathematics (e.g., [deB, Ap]). Just as important for mathemat

ics are the extremely successful attempts to instiU meaning and insight, both 

representation-theoretic (e.g., [Mi]) and combinatorial (e.g., [Fo2]), into these 

identities.

Special functions share an even more remarkable property recently pointed out in [Z2, 

Z4, WZ2j; Most special functions can be written in the form
<L

OO

k=o

where n is an auxiliary paxameter, and one has that not only is F( n , k  -1- l ) f F{ n , k )  a 

rational function of k, but is a rational function of (n, k), and in addition, so is F{ n +  1, k) j  

F{n, k) .  It is easy to check that F( n  + l , k ) f F{ n , k )  is indeed a rational function of {n,k)
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in the examples given before. We will call such an F  a hypergeometric term} as in [WZ3]. 

This observation led Zeilberger [Z4] to conclude that a hypergeometric term is [WZ3] “an 

entirely rational, finitary'object,” and “can be handled by finite methods and machines 

[Z4], [WZl], [WZ2].” Thus was born Wilf and Zeilberger’s algorithmic proof theory for 

hypergeometric identities [WZ3].

Sister Celine Fasenmyer working under the supervision of Rainville found an algorithm 

for obtaining recurrence relations satisfied by hypergeometric polynomials. She presented 

the method by examples in her Ph. D. thesis [FI] in 1945 and in two subsequent papers 

[F2, F3]. Before the 1940’s, ‘it seemed customary upon entering the study of a new set 

of polynomials to seek recurrence relations, pure or mixed by essentially a hit-and-miss 

process’ [R, p. 233]. With Sister Celine’s technique, it was possible to find pure recurrences 

for a certain class of hypergeometric polynomials. Verbaeten [V] in 1974 showed how to 

make her technique general in the one summation case.

Independent of Verbaeten’s work, Zeilberger [Z2] showed how to apply Sister Celine’s 

method systematically. Furthermore, Zeilberger realized that Sister Celine’s technique 

implies all binomial identities are trivial in the sense that one only needs to check a finite 

number of special cases to establish the truth of the identity of interest. Indeed, Zeilberger 

is the first to realize that Sister Celine’s technique opened the door to automatic proving 

of hypergeometric identities. Central to Zeilberger’s discovery is the fact that given a 

proposed hypergeometric expression Y^kF{n,k)  =  show that the

equality holds for all n by showing that both '^k Sfc G{n,k)  satisfy the same

’̂ More generally, a function F{ k i ,  k^, ■ ■ ■, fcr) is said to be a hypergeometric term  if, for all i €  [r], the 

ratio F { k i , . . . ,  fc,_i , k{ -f 1, fc,+i, . . . ,  k r ) / F { k i , k r )  is a rational function in all the variables.
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recurrence and agree for some initial values of n.

Zeilberger’s development of the proof theory for hypergeometric multisum identities 

began in the late 70’s. A decade later, Wilf and Zeilbergef employed Gosper’s algorithm 

[G] in the discovery of WZ-pairs for proving hypergeometric identities [WZl, WZ2, Z5]. 

( Almost all known single-sum hypergeometric identities can be proved using WZ-pairs.) 

Recently [WZ3], Wilf and Zeilberger formalized, systematized, and generalized Sister Ce

line’ technique to prove hypergeometric identities. They defined proper-hypergeometric 

terms [WZ3, p. 596] for which her method will always produce recurrence relations. For 

the first time, an explicit a priori upper bound for the order of the recurrence satisfied by 

the hypergeometric term F{n,  k) is known [WZ3, Theorem 3.1]. Further, they gave admis

sibility conditions [WZ3, p. 602] on F’(n,k) for X^kF’(w,k) to satisfy the same recurrence 

as F’(n,k). In addition to the proof theory for (multisum) hypergeometric identities, they 

successfully applied Sister Celine’s technique to ^-hypergeometric identities to obtain an 

a priori upper bound for the order of the recurrence, and for the first time presented an 

algorithmic proof theory for, the g-hypergeometric identities. Combining the notion of 

WZ-pairs and the proof theory for multisum ordinary/g hypergeometric identities, they 

showed how to prove ordinary/g hypergeometric identities using WZ-tuples. (Again, al

most all known identities satisfy recurrence relations in the form of WZ-tuples.) The proof 

theory was also extended to identities involving multiple integrals. For this dissertation, 

we will consider Wilf-Zeilberger’s algorithmic proof theory only for the discrete ordinary 

single/multisum identities.

Sister Celine Fasenmyer in her Ph. D. dissertation [FI] presented many examples of 

hypergeometric series F{n,  k)x^ for which she found recurrence relations by first ob-
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taining the recurrence for F{n,k)x' ‘. Her technique finds a recurrence relation for the hy- 

pergeometric term, F{n,k)x^ with polynomial-in-(n,a;) coefficients. Three decades later, 

Zeilberger applied Sister Celine’s method for proving proposed hypergeometric identities 

[Zl, Z2] in the following way. Suppose, we would like to show that = / ( ” )>

where F{ n, k)  and /(n) are hypergeometric terms. Then we consider the ordinary gen

erating function of F{n,k) ,  namely, S*. T’Cw, A:)®*’, and obtain a recurrence relation for 

F{n,k)x^ using Sister Celine’s method. After dividing the recurrence relation by the 

smallest common factor (a; -  1)*, and setting a: = 1, we get a recurrence for F{n,k) .  If we 

sum over k, we will, if lucky, get a recurrence for the sum Because the co

efficients of the recurrence relation are polynomials in (n,a;) by Sister Celine’s technique, 

the coefficients of the recurrence for the sum X)*, F{n,  k) are polynomials in n only. It 

is now trivial to check whether f ( n )  satisfies this recurrence relation. If this is so, and 

if /(n) = ^ k F { n , k )  for certain initial values of n, then it follows by induction, that 

/(n) = Y!ik F{ n, k)  for aU n. The necessary initial values to check are the numbers up to 

(and including) the sum of the order of the recurrence and the highest integer zero of the 

leading (polynomial-in-n) coefficient of the recurrehce. In short, we have reduced proving 

the identity into checking a few initial values of n. Furthermore, Zeilberger expressed the 

view [Z2, p. 122] that given X)*, F{ n, k)  = f {n) ,  where F( n , k )  and f ( n )  are hypergeomet

ric terms, there exists an ni such that the identity ~ /(^) ^

(and only if) it is true for n < n\ .  We give an explicit, pre-computable n\  in this paper. 

(See Theorem 5.1 and its proof in Chapter 5.)

In Chapter 1, we follow the proof of [WZ3, Theorem 3.1] and sharpen upper bounds for 

the order of the recurrence satisfied by the summand in the case of just one summation
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index.

Chapter 2 contains an algorithm for finding the certificate R {n ,k ) , a rational function 

in n and k, needed to prove identities in the WZ-pair fashion. The algorithm is similar to 

the one described in [WZ3, pp. 592-593] for finding the certificate R(n, k) directly. It uses 

the sharper upper bounds from Chapter 1.

Chapter 3 is a multivariable version of Chapter 1. To accomplish this generalization, 

we need to solve a certain minimization problem, estimate the number of positive zeros of 

a particular polynomial, and find an upper bound for the zeros of that polynomial.

Chapter 4 is the multivariable analogue of Chapter 2. We present an algorithm for 

finding the certificates i?,(n, k) for i G [r] that are needed in proving identities using WZ- 

tuples. As in Chapter 2 which used bounds from Chapter 1, the bounds from Chapter 3 

are used in Chapter 4.

In response to [WZ3, §2.3, end of ^2], we show in Chapter 5 some examples of hyper- 

geometric sums wliiose recurrence have leading coefficients that vanish at positive integers 

where the sums are valid. We devote most of the chapter to the proof—using results from 

Chapters 1 and 2—of our

Main Theorem. Let

F {n ,k )  = P {n ,k )
+ bsk + Cs)\ k

be an admissible proper-hypergeometric term, and P{n, k) be a polynomial with coefficients
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in Z. Let

X : =  max{|a5|,|6s|,|cs|,|u5|,|vs|,|ws|},
S

y := max{p,q} ,  

z  := max |fn'̂ A;‘]P(n, A:)|, 

d : = l  +  max{deg;, P{n,  k), deg„ P(n, k)},  

and let hq be a given integer. IfY^k = 1 for

no < n <  3̂ : c y f d + m 2 ^y f d^( d+m- y ) \ ( d+i ) ( 2 . yf^

then P(n, fc) = 1 for all n > nn.

In the last section of Chapter 5 we generalize the Main Theorem to the cases where 

the equations = /(^) hypergeometric term /(»)) and ~

(for some admissible proper-hypergeometric term) are the objects of interest. 

We generalize Theorem 5.1 to multiple summation indices in Chapter 6.

Chapter 7 contains a sufficient condition on F(n,k)  for the sum, ' ^ k F{ n , k ) ,  to be 

hypergeometric—or equivalently, to be summable in closed form. The sum X)* F{ n , k )  =: 

/(n) is hypergeometric if f { n ) j f { n  + 1) = P{n)!Q{n)  for some polynomials, P  and Q,  in 

n. Notice that in this case, P { n ) f { n  -h 1) -  Q(n) f {n)  — 0, so f {n)  is a solution to a first 

order recurrence relation (in n) with polynomial-in-n coefficients.

Petkovsek, in his Ph. D. dissertation [P], gives an algorithm that solves the following 

decision problem:

Given a linear recurrence relation of order h with polynomial coefficients, decide whether 

the recurrence has a solution that satisfies another recurrence o f order 1; and if so, find

that recurrence of order 1.
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In other words, Petkovsek gives necessary conditions on the polynomial coefficients of 

the recurrence for the existence of a hypergeometric solution to the recurrence. Petkovsek’s 

algorithm works only if the recurrence contains no free parameters. We still do not know 

any necessary condition on an admissible proper-hypergeometric term, F{n,k) ,  for the 

sum F{ n, k )  to be hypergeometric.



CHAPTER I

THE ORDER OF THE RECURRENCE FOR F{ n, k)

We show slightly better upper bounds for the order of the recurrence satisfied by a given 

proper-hypergeometric term F{n,k) .  We follow the proof of Theorem 3.1 in [WZ3] and 

hold fast unto the estimates to obtain our bounds.

Definition 1.1. [WZ3] A proper-hypergeometric term  is a function of the form

( 1.1) F( n, k)  =

where P  is p  polynomial and  ̂is a parameter. The a’s, Fs, u ’s and u’s are assumed to be 

specific integers, i.e., they are integers and do not depend on any other parameters. The 

c’s and the w’s are also integers, but they may depend on parameters. We will say that 

F  is well-defined at (n,k)  if none of the numbers {usU + bsk + is a negative integer. 

We will say that F{ n, k)  = 0 if F  is well-defined at (n,k)  and at least one of the numbers 

{usn  -f Vsk -|- tUs}| is a negative integer, or P(n, k) = 0.

Definition 1.2. [WZ3] A proper-hypergeometric term F  is said to satisfy a fc-free recur

rence at a point (no,ko) G if there are integers I, J  and polynomials =  a i j { n )  that 

do not depend on k and are not all zero, such that the relation

I  J

(1.2) Y ^ Y ^ a i j { n ) F { n - j , k - i )  =  0
t= 0  j=0

holds for all (n,k)  in some neighborhood of {no,ko),  in the sense that F  is well-defined 

at all of the arguments that occur, and the relation (1.2) is true.

1 0
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Theorem 1.3. [WZ3, Theorem 3.1] Every proper-hypergeometric term F  satisfies a non

trivial k-free recurrence relation. Indeed there exist I ,J  and polynomials a i j { n )  (i =  

= 0 ,. . . ,J )  not all zero, such that (1.2) holds at every point (no,ko) G for 

which F{no,ko)  0 and all of the values F{no -  j ,ko — i) that occur in (1.2) are well- 

defined. Furthermore there exists such a recurrence with ( I , J )  =  where

(1.3) r = Y. Ift.l + E  1 ((E + E  l“*l) - 1) •
S 3  S 3

1.1 S lig h t ly  b e t t e r  u p p e r  b o u n d s

Notation. We let a; + := mcix{0, x}. The set {1 ,2 ,...,/}  is denoted by [/], and [J]o means 

[i] U {0}. We let X—  denote x{x -  1) • • • (x -  m +1), and x’” denote x(x + 1) • • • (x + m -  1) 

for positive integers m. We define x- = 1 = x°.

We improve the bounds for I* and J* by

Theorem 1.4. Let

U : = ' ^ U s ,  A : ^ J ^ a s ,  B

vUo  ̂ 6 ,^ 0  . *

:̂= J3(„.)++ J] ®:=5](i,)+ +
3 3 3 3

i>.#0

and 6 = degĵ . P{n,k) .  Then J* and I* in (1.3) of Theorem 1.3 can be replaced by 

J* =  ‘B +  (V  -  B) + ,  and I* =  1 +  6 +  J* { A { U  -  A ) + -  l ) .

Proof. Fix some I , J  > 0, and suppose (no, ko) is a point that satisfies the two conditions of 

the theorem. Since we assumed that all of the a*, 6̂ , lij, Vs in Definition 1.1 axe integers, we
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have that for all (n, k) in some neighborhood of (no, A;o), all of the ratios F{n — j , k  — i ) l  

F{ n, k )  are well-defined rational functions of n and k. (See (1.1) for F{n,k) . )  Hence we 

can form a linear combination

(1.4)
I  J

t= 0  j= o

F{n - j , k -  i) 
F{n,k)

of these rational functions, in which the a ’s are to be determined, if possible, so as to make 

the sum vanish identically in the neighborhood.

As in [WZ3], the problem is to find a common denominator for the summand in (1.4). 

Instead we find a common denominator D( n , k )  for

I  J

E E F(n -  j , k  -  i) 
F{n,k)

Clearly, D{ n, k )  is also a common denominator for the summand in (1.4). 

Consider

(1.5)
F{n — j ,  k) _  P{n — j ,  k) -i^ (g^n -b bgk + — a^j)! (ugn -f Vgk -b u;^)!

F(n,k) P{n,k) AJ. (g^n-f -f c^)! (u^n-f 4 -in*-/«*;)!

which contributes to the denominator D{n,k) ,  if g* > 0, or Ug <  0, or both. 

In (1.5), if g« > 0 for some s £ [p], then

(g^n + bgk + Cg -  Ogj)'- _  _______ 1_______
(g^n -f bgk -|- c*)! (g^n +  bgk +  Cg)~^

Since (agU -b bgk + c,)—  divides (g*n +  bgk -f- Cg)—  for 0 < j  < J  and g« > 0, a common 

denominator for

p 9 ___
P{n,  k) (g^n -f bgk 4- c*)—  {ugU 4- Vgk 4- u;* 4- 1)““*'̂ .

S = 1  s = l
a , > 0  ■Uj<0

( 1.6)
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Similarly, a common denominator for F(n,k) ̂
p 9 ___

(1.7) F(n,k) (o,n + + c,)—  ] J  (u,n+,Vsk + w, +
s = l  a = l

63 > 0  * ' .< 0

Putting (1.6) and (1.7) together, we have
n .X  ̂    '• ~

D{ n , k )  = P{ n , k )  J][(ajn+6sfc+Cs) |J[(usTi+UsA:+ins + l)
s = l

Clearly,

and

max{ as j  + bs})'^ = (as)^J + (bs) I-,
te[/]o
j€[/|o

max(-UsJ -
t6 [lio
j€ [J lo

If we let 6 := deg;. P(n, k), then the degree in k of D{n,  k) is

s + j (  E ( “.) * ) + <  E(^-)'")+'^( E  (->*■)*)+<
s6[p] s€[p] sGM
6,t£0 ‘

= «+.7 (E  (<••)■' + E  +̂ ( E  + E  ■
^ a€[p] s6[?l *e[P] «e[3]

b,^0 v.^O

Next, we find the degree in k of the numerator polynomial N{ n , k )  in (1.4) with D{ n, k )  

as the common denominator. Consider the (i,i)th term in

~ ~ 0
(1-8) 2 ^ 2 ^  F(n,k)i=o j=o '

Since

Fj n  - j , k -  f) ^  P { n - j , k - i ) i 
F{ n, k)  ~  P( n , k )

f[ (a,n +  M  +  c* + 1) “ “ '^' n  i ' ^ s n  +  V s k  +  w , )
u,j+v,i

X
S = 1

a, j+f>jt<0
s = l  usi+«;.»>o

J J  (OsTl +  b sk  +  C3)
a,j+b,i (u,n + Vsk + u;̂  + 1)- U , J - V , t

S = 1
q« j+i>»»>0

S=1Us
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by letting

P   9
N i j : =  n  (a*n + 6.fc + c, + l)'“*''“*’'‘ ]][ + +

3=1a , j+ !> , i< 0  u ,j+ v ,i> 0

D , j : =  n  {a,n-t-b,k + c , f ‘i ^  H
3=1a,j+bsi>0 u,j+v,i<0

we have
F { n - j , k - i )  _  P(n - j , k -  i) N i jD jn ,  k)

F{n,k) ~  P(n,k) ^ Di;jD{n,ky

Hence, the degree in k of the numerator of the {i,j)th. term in (1.8) with D(n,k)  as the

denominator, i.e., P{n -  j , k  -  i)(~’NijD{n, k)/  [Di jP{n,k)) ,  is

(1.9) (usj  +  v j )
!),#0o,i+i>,t<0 u,j+t;5t>0

+ deg;;. D{n, k) — ^  {asj + bsi) -  ^  — ‘<̂si) — b
b.r̂ O

asj+i>5«>0
= degfc D{n, k) +  {ugj +  Vgi) -  ^  ( a j  + bgi).

%

Taking the maximum over i , j of the last line of (1.9) gives

deg;̂  iV(n, k) = ina;Xrdegfc D{n,  ̂ ) + ^  {^sj + '<̂si) ~  ^  {o-sj + 3̂ *))
 ̂ v.^O b,^o

= degfc D(n, k) + niaxfi + i ^ ^ V s  -  j  -  i ^ b s \
'  ̂ « s . Sv,?50 b,^0

U : = ^ u „  V : = J 2 v „  A a„ B - . ^J ^ b , .
v /,4 0  * 6 . # 0  ^

Let
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We can- rewrite deg;(. N{n,'k) as

degfc N{n,  k) = deg*. D(n,  k) +  max[ j {U -  A) +  i {V -  B))

= degfc D{n,  k) +  J{U -  A)+ + I { V  -  B)+.

Knowing the degree in k of N{n,  k), we deduce that there are 1+deg*. N{n,  k) homogeneous 

linear equations to solve in (/ + 1)(J + 1) unknowns, namely, the Oj.j’s. A system of 

solutions for the Ojj’s exists, if (/ + 1)(J + 1) > 2 + deg*. N{n,  k). From the inequality, we 

will obtain an upper bound for J.

Let

A := 2  (a,)+ + ® ==
3 S S 3

b , ^ 0  V i ^ O

Then,

deg*. iV(n,fc) = deg;. B(n,  k) + nicix^j(^ -  A) + i (V  -  B)'^

=  6 +  J A  +  I ^  +  J ( U -  A)+ + I ( V  -  B)+.

I f 3  +  ( V - B ) + ^ 0 ,  we let J* ^  3  +  (V -  B)+,  and solve for I* in (I  + 1)(J + 1) > 

2 + deg*. iV(n, A;) to get I* =  1 + <5+(A + ( t / -  A)+- 1) (S + (F -  5)+) as an upper bound. 

If B + (F -  5)+ = 0, namely

s s s s

then bs =  0 for all s € b]» = 0 for ail s G [g]. In other words, the factorial part of

F{ n, k )  is independent of k. In this- case.

Y,F{n,k) n.€[p]K»+c»)! Y,p(n,k)e
k
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The sum above is summable but infinite. Since we are concerned with only terminating 

hypergeometric series, we can disregard the case B + (F -  5)+ = 0 . □

Remark. If P{ n , k )  in F{n,k)  is a constant, then  ̂= 0. In this case, the I* and J* from

Theorem 1.4 agree with the results in [W2] when B + (I  ̂-  B)+ ^  0.

1.2 Examples

Example 1.5. Take F{ n, k)  = (fc)^ We express F{ n, k)  in the form of Definition 1.1 

to get n\‘̂ /{k \‘̂ {n -  k)\'^). Then ai = 0 2  = 1, 6 1  = 6 2  = 0, ui =  U2 -  0, U3  — U4 =  1,

= 1,2 = 1 , U3 = U4 = - 1 , = 2 , E = 0 , A = 0, 5  = 0, yi = 0, B = 2. Since U - A  =  2

and y  -  5  = 0, we get J* =  2 and J* = 3.

The following two examples are from [W2, p. 4].

Example 1.6. [W2] Fix a positive integer m, and put

, n!'"
-  A:)!'" ‘

Then Oj = 1, i G [m]; 6 ,- = 0, i G [m]; Uj = 0, i G H ;  u,- = 1, i G [2m] \  H i  

i G H ;  Vi = -1 , i G [2m] \ [m]. Thus A = 0 , B = 0 , f/ = m, E = 0, A = 0, B = m. 

Hence J* = m, and I* =  { m -  l)m + 1.

Example 1.7. [W2] If E(n,A:) = (n + A: + a  + /3)!/(A;! (n-A:)! (A; + 0 !)!), then the /„ ’s where 

fn{x)  = SfcF(n,A;)a;* are the Jacobi polynomials. (See Formula (Jacobi) in Introduction 

for Jacobi polynomials.) A similar calculation as in the previous examples shows that 

J* =  2 and I* =  1. This is the best possible.



CHAPTER II

AN ALGORITHM FOR CERTIFYING = /„

In Chapter 1, we found an upper bound for the order of the A:-free linear recurrences 

with polynomial-in-n coefficients that the proper-hypergeometric terms satisfy. Now, we 

will apply the upper bound for J  to Theorem 3.2A in [WZ3] to obtain an algorithm for 

finding directly the certificates, ao{n), Ci (n),. . . ,  aj {n) ,  not all zero, and a rational function 

R{n,k) .

First, we state

Theorem 2 .1 . [WZ3, Theorem 3.2A] Let F  be a proper-hypergeometric term, and let 

(n, k) G he a point at which F{n,  A:) 7  ̂0 and such that F (n -  j , k -  i) is well-defined for  

all 0 <  i < I  and 0 < j  < J . Then there are polynomials ao{ n) , a i ( n) , . .  , , a j { n ) ,  not all 

zero, and a function G{n,k)  such that G{n,k)  = R[ n , k ) F( n , k )  for some rational function  

R  and such that

(2.1) ao{n)F{n,k)  + ai {n)F{n - l , k )  + ----1- aj {n) F{n -  J,k)  =  G{n,k)  -  G{ n , k  -  1 ).

The main idea of the algorithm is to find an upper bound N for the degree in k of the 

numerator polynomial of R{n,k)  from J* in Theorem 1.4, for R{ n, k)  must have the form

E ^ o  Cj(n)fc*'
DR{n,k)  '

where Cj’s are polynomials in n. Knowing that we need at most J* + 1 polynomials a f in)  

for the recurrence and iN + 1 polynomials cfin) for R{n,k) ,  we can solve for the afis and 

Cj’s from a homogeneous linear system constructed in the algorithm.

17

7
J
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A l g o r i t h m  f o r  t h e  C e r t i f i c a t e

Step 1. Divide (2.1) by F{ n, k)  to get

(2.2)
j=o

F{n -  j ,  k) 
F{n,k)

=  R{n,k)  -  R{ n , k  — 1) F{ n , k  -  1) 
F{n,k)

Step 2. Find a common (ienominator for R(n,k) .  Prom the proof of Theorem 3.2A in 

[WZ3], we know that R( n, k)  has the form

7 - 1  J

E E p i j { n ) F { n - j , k - i )  
F(n,k)

t'=0 j= 0

Therefore, a common denominator for R{n,  k) is Dn{n,  k) =

P(n, k) JJ(as7i + hgk + ĉ )
(o,) + J+(b,)-^(7-l)

JJ(Usn + + 1)  ̂ 1).
5=1 3=1

Step 3. Estimate the degree in k of the numerator polynomial NR{n,  k) over the denom

inator Dn{n,  k). After some computation,

degfc N r { ti , k) = degfc Dh(«, h), + .^^in^_  ̂(j X)  ̂ S  ~ ‘

Let

Us, V : = Y : , v„ A: =  tts, B :=
S

V s ^ O
s

b s \ i O  *

A : ^ [ ' ^ ( a s ) +  +
S s s s

b s ^ O  VajiO

We express deg;;. NR(n,k)  in terms of the new variable names:

deg;t FfR{n, k) =  degfc P(n,  k) +  J A  +  ( I -  1)® +  J{U -  A ) + +  {I  -  1)(F -  P)+ =: 3̂ .
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Step 4. Assume that R( n, k)  has the form

S ?lo  Cj(n)fc»
DR{n,k)

Substitute it into (2.2) to get 

/ooN ' ^ o . j { n ) F { n ^ j , k )  ^  c,(n)A:*  ̂ ^  Ci{n){k ~ 1)' F( n , k  -  1) „
j=o F(n,k)  ^ D R { n , k )  ' ‘̂ D R { n , k - l ) ' '  F{ n, k )

Finally, the stage is set for solving for the unknown polynomials aj{n)  and Cj(n) 

fov 0 < j  < J  and 0 < i < X.

Step 5. Find a common denominator for all three terms on the left of (2.3); A common 

denominator for (2.3) is

P( n , k )  Jj[(a,n + bsk + c j (g .)  + J+(i>.) + J

S = 1

JJ(usn 4 - +  tt7j + 1)( u.I+J'+C v,)+i
5=1

9
X JJ(a4T i +  bsk +  C 5 )^ ^ ^ J ^ (u s n  +  Vgk +  Ws +  1)^

S =  1

(From now on, we apply the same idea as in the proof of Theorem 3.1 in [WZ3].) 

Step 6. With this common denominator, we find a common numerator of (2.3) and 

make the coefficient of every power of k that occurs in the common numerator 

polynomial vanish because (2.3) vanishes identically.

Step 7. Take the resulting system of linear homogeneous equations, and solve for the

U j ’s and C j’s .  We know that a non-trivial solution exists from Theorem 3.1 of 

[WZ3].



CHAPTER III

THE T--VARIABLE CASE

In this chapter, we generalize the result of Chapter 1 to r summation indices. Definitions 

3.1 and 3.2 are r-variable analogues of Definitions 1.1 and 1.2.

Notation. Let k be a vector in Z'’. We use z*' to denote ^ 2  ̂ ■ Zr' ■ For x and y in R’’,

x -y  denotes the usual inner product. Define x < y to mean Zj < yi for all i 6 [r]. We use 

No to denote the set {0,1,...}. As in Chapter 1, we let x— denote x(x — 1) • • • (x — m + 1), 

and x'" denote x(x + 1) • • • (a: + m — 1) for positive integers m. We define x- = 1 z= x°.

Definition 3.1. A proper-hypergeometric term  is a function of the form

(3.1) /■(rajk) = F(n,k) + ba • k + c,)! 
n!=i(^s  ̂+V* -k + u;,)!̂

where P is a polynomial and z is a parameter. The a’s, b’s, u’s and v ’s are assumed to be 

specific integers, i.e., they are integers and do not depend on any other parameters. The 

c’s and the w’s are also integers, but they may depend on parameters. We will say that F  

is well-defined at (n, k) if none of the numbers {cjn + • k + is a negative integer.

We will say that P(ra, k) = 0 if P  is well-defined at (n, k) and at least one of the numbers 

{u^n -|- V, • k -b Ws}i is a negative integer, or P(n, k) = 0.

Definition 3.2. A proper-hypergeometric term F  is said to satisfy a k-free recurrence at

a point (no, ko) € if there are integers 7i, / 2 , . . . ,  / r , J  and polynomials a(i, j ,  n) that

do not depend on k and are not all zero, such that the relation
I J

i= 0  j= 0

20

(3.2)
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holds for all (n,k) in some neighborhood of (no,ko), in the sense that F  is well-

defined at all of the arguments that occur, and the relation (3.2) is true.

Theorem 3.3 [WZ3, Theorem 4.1]. Every proper-hypergeometric term  F  in r variables 

satisfies a non-trivial k-free recurrence relation. Indeed there exist I ,J  and polynomials 

(i = not all zero, such that (3.2) holds at every point

(no,ko) € Z’’+i for which F {no,ko) #  0 and all of the values F{no -  i,ko -  i) that occur 

in (3.2) are well-defined. Furthermore there exists such a recurrence in which J  =  J*,

where

■'■ = |n (E E ic>-v i+ tE K v.v i) '  ■
s = l r '  =  l  s = l r ' = l

Using the terminology and variable names of Theorem 3.3, we state

Theorem 3.4. Let 6 be the degree in k of P(n,k), 2 < r G N, /?i := Bj -f (Vi -  B i ^ , for  

i e [r], and fir+i := A +  {U -  A )+ , where

U := “  S5 S “
v , # 0 b^iO

and

yi;=,^(a,)++ ' ^ { - U s ) ^ ,  'Br.= Y^{bis)^ + Y ^ { - v i s y .

bf:}iO

Furthermore, let

S
v , # 0

g { y )  ■■=

The polynomial g{y) has a zero that is greater than 2maxj{^j}. If Pg denotes the largest 

zero of g{y),  then J* in Theorem S.3 can be replaced by

pg
-  1.
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3.1 Lemmas

We need the following lemmas for the proof of Theorem 3.4. The first lemma states 

that if 2 < X G satisfies

r+l /

JJ Xj > 1 + f
t=l

 ̂+ r + /3 • (x -

then X is not at the boundary of the set { x  | x  > 2}. The second lemma states the 

existence of x *  subject to the inequality above such that /3 • x*  is a minimum of ^  • x  and 

at the minimum,
r+l /<

n^‘=i+(
t=l ^

Lemma 3.5. Let 6 be a non-negative integer, r >  2 be a positive integer, and 1 < /3 G 

I f 2 < x E  R’’+̂  satisfies

+ r + 3̂ • (x -  1) 
r

t=i

then X > 2.

Proof. Suppose not, say x^+i = 2, then

2 ] ^ x i  > 1 + r
t=i ^

r + ^ + / 3 - ( x -  1) 
r

j  +  ̂+ f i r + l + ~ 1)
3R H s = 1 + n

i=i

 ̂+ fir+ 1  ̂
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Since /?r+i > !> > 1. Furthermore, for all

2 < j  < r.

3jnce ( ^ 1  x,-, RHS > LHS. A contradiction is reached upon assuming that

one of the »j’s is 2. Therefore, we conclude that x > 2.

Lemma 3.6- Let 6 be a non-negative integer, and let /3 G such that (3 > 1. Then 

there exists x* > 2, x* G E'’+̂  such that

(3 -x* =  min \  /3 -x
r + l  /

x GR'’+ S x > 2,]^a:i > 1 +  f 
1 = 1

^5,+ r + /3 - (x -  1)̂

and
r + l

a;* = 1 +
S +  r +  / 3 - { x * -  1)^

Proof. We first show the existence of x*. Choose a y > 2 such that

( , _ X ) )

t = l  ^  ^

This is possible for a sufficiently large y because Vi is of degree r+ l and ,

of degree r. By Lemma 3.5, y > 2. Consider the compact set

5 = {xl2<a:i  </3-y, iG [r + l]}.

Note that y  e  S. We claim that if /3 • x < /3 • y, then x G 5. Suppose x ^ 5, we 

show that /3 • X > /3 • y. If x ^ 5, then Xi > ^  • y for some i G [r + 1]. Since /3 > 1,

Next we consider the closed set '

r + l
X > 2, Xj > 1 + 

i= l

<5 + r + /3 • (x -  1)̂r= x̂ r
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Clearly 5 fl T is-compact and non-empty, for y 6 5 D T. Furthermore,

X* = min 3  • x  
xesnT '^

= mm
r ’■+1 /

< • X  X G M'’‘'‘̂ ,x > 2, a;,' > 1 -h f
 ̂-f- r + • (x -  1)

for aij = 1 4- is continuous in all Xj’s.

Now we show that such an x* satisfies

i - \  ^ '

Suppose not, i.e., x* = mm^^snT P  ‘ x, and rii=i > 1 + Since x* > 2

by Lemma 3.5, there exists an open ball, hence a closed ball B  centered at x* in 

such that

B = { x | , x > 2 . n * , > i + C + ' - + ' ’; ' " - ^ > ) } .

But the map x —>• /3-x is continuous, and B  is compact. Therefore minxes /3-x is attained 

at the boundary of*.B. This leads to a contradiction, for x* is not at the boundary of B. 

Thus at the minimum,

r + l

i = l  ^ '

3.2 A MINIMIZATION PROBLEM

In the previous section, we proved the existence of x* > 2, x* G such that 

/3-x* = m in | / 3 -x  x G R’■+^x > 2, Si > 1 -f-  ̂^  | ,

and
r + l  ,

n»?=i+(
t = i  ^

 ̂+ r- + /3 • (x* -  1)
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In this section, we will express explicitly the minimum of /3 • x subject to the constraints 

X > 2, and

in terms of a root of a certain polynomial equation. (See (3.5) below.)

Proposition 3.7. Let r be a natural number, let u and v be non-negative real numbers, 

and let w be a positive real number such that

For 6 > 0 ,  define

-------r  < u < w.r + 1

f i x )  ■.= {x +  2«)'+> -  ( l  + ('^ + ■■ + + 2“) -  »

Then f  has at m ost two positive zeros; if  2 < r < 4, then f  has one or two positive zeros; 

if r >  5, then f  has exactly one positive zero.

Proof. We rewrite the expression for / :

/  4- 1 \  ^
/(®) = X )  ̂ j(2n)''a:’’+^“  ̂ -  w -  + l)a: +  2ti(r + 1) -  v +^  + i) .

The case “r = 1” is utterly trivial: our function is a quadratic polynomial and, hence, has 

at most two (positive) roots. For r > 2 we prove the proposition using Descartes’ rule of 

signs  ̂ [PS, p. 41]. Note that [x^+^]f{x) = (’'+^)(2u)° = 1 > 0.

^Descartes’ rule of signs: A polynomial, an®” +  ■ ■ ■ +  ai® +  ao, has at most as many positive zeros as

there are sign changes in the sequence oq, a ^ , a n ,  or less by an even number.
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If r = 2,

f {x)  = a:̂  + 6ux^ + 12û a: + 8u  ̂ -  w

— y(3x + 6« — V +  ̂+ l)(3x + 6w — V +  ̂+ 2) 

= x  ̂ +  Qux  ̂ —  jwx^

+ 12u^x -  f  3x(12u -  2r + 2  ̂+  3)

+ 8u^ —w  -  y(6tt -  V +  ̂+ 1)(6« -  t; + (5 + 2).

rule that /  has at most two positive zeros. If m < |w , then

because v < (r + 1)m = 3u. The list of coefficients therefore reads; positive, negative, 

negative, unknown. It again follows from Descartes’ rule that /  has at most two positive 

zeros.

Now to the general case, “r > 3.” By assumption, u{r + !)> ? ;, so 2u{r + 1) -  i; + <5 >

We see that

If u > f w ,  then the two leading coeflicients are positive, and it follows from Descartes’

[x]f(x) = 12u  ̂ -  f  3(12u -  2u + 2  ̂+  3)

< 12u  ̂ -  2u(12u -  2v + 2̂  +  3)

< 12n  ̂ -  2«(12u — 2v)

<  12u^ -  2u6u = 0

V-
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i(̂ r +  1) +  S > u{r +  1) > 0. For 1 < A: < r + 1 we therefore get that

r  .

(3.3) J J  ({ r  + I)* + {2u{r + 1) -  v +  ̂+ *))
t=i
= {r + iy+^-^ Y, + +  ̂+

SC[r] ie S  
|S |= f c - l

> (r + !)’■+'-* L  [  J  (2u(r + l ) - v  +  S)

> ( r + i r + ‘- ‘ ( j ,"  j ) ( « ( f + l) ) ‘ - ‘

fc-1

It follows, for 1 < A; < r, that

[a: < ( ’■ t  ‘) (2»)‘ -  S ( i !  l) (■• +
(  ̂+ 1)!__ okr2''u" w r:

k \ {r  +  l - k ) r  “ r!(A :-l)!(r + l-A:)!
( r +  ! )« ' ' - !  / 2 M  .

,  ( , +  l ) . ‘ -  _ ( 2 ^ „

(r + fc-i

{k -  1)! (r + 1 — A:)!

< ’-IM (2"(^ -  1)! -  < r  + 1)"-') < 0
(k -  1)! (r + 1 -  A;)!

because u < w and 2’’ < for r > 3. (To prove this, note that  ̂ —

(r^)r- = (1 + !)'• = X)I=o (D(r)'^ = 1 + + • • • > 2. Since 2®+̂  < it follows that

(3.4) 2r+l < {r+iy for r > 5.
r\

Thus 2  ̂ <  for r > 6; the cases r = 3,4,5 are easily checked.)

We have shown that *]/(^) 0 for 1 ^ A; < r, whence f  has at most two positive

zeros by Descartes’ rule.
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Now assume that r* > 5. Using first (3.3) and then (3.4) we get that

=  2 ’’+ ^ u ’’+^ -  ti;

w I r 
r! \ r  

,(r + 1)
ri

< - w -  u;ti’'2’'+̂  < 0
because u < w. It follows from Descartes’ rule that /  has at most one positive zero, and

clearly—the constant term being negative and the leading coefficient being positive—there

is at least one positive zero. □

Corollary 3.8. For integers  ̂ > 0, r > 2, and 1 < /3r+i < Pr P i, define

/(.) := ( . + -  (i+(̂ +̂ +(̂ + -  £-  '’<)) n ft-
If r =  3 or A, then f  has at most two positive zeros; otherwise, f  has exactly one positive 

zero.

Proof. Let u : =  P i ,  v : =  P i ,  and ^  := ITF=i P i -  Clearly u, v, and w  are positive real 

numbers and < u < w. By Proposition 3.7, /  has at most two positive zeros, and /  

has exactly one positive zero, if r > 5. We need only deal with the case ‘r = 2’. To do so, 

we expand f { x)  as in the proof of Proposition 3.7 to read off the coefficients. Note that 

[x^]f(x) = 1 > 0.

If u /  to, then ^  > 2 because all the Pi's are positive integers. Hence

[x^]f{x) = 6u -  |to < 0;

[x]/(a:) = 12tî  -  |to(12u -  2i; + 2̂  +  3)

< 12u  ̂ -  |to(6u 4- 2̂  ■+• 3) < 0;

[®°]/(/) = 8u  ̂ -  w -  j { 6u  -  u -f  ̂+ 1)(6m -  v +  6 + 2) 

<8u^ - w  -  f  < 0.
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If u =  w, then /?,■ = 1 for alH e [r + 1], so u = v = w. Thus

/(») = »=' + -  ( f  + 3«) * -  (l4  + f S + l ~ ) .

In either case, there is only one sign change in the sequence of coefficients of f { x ) ,  so /

one positive zero. □

Example 3.9. Let S =  0, r =  3, u =  4, v =  7 and w =  4, then f { x )  has two positive 

zeros.

Theorem 3.10. Let S he a non-negative integer, and 2 < r 6 Z. Let /3 > 1, /3 6 

The minimum of (3 --x.

has at most one positive zero by Descartes’ rule; and clearly—the lea,ding coefficient being 

positive and the constant term being negative (in both cases)—our function has at least

subject to X > 2
r  ’ ■*

. and

is (r + l )y*,  where y* is the smallest zero of

(3.5) 6 + r + {r + l ) y~Y:^+l Pi
r

such that y* >  2maXj{^i}.

Proof. For all c > we define H{c)  to be the hyperplane

Also we define a closed set

T =  { x  x >  2,

{x I /3 ■ (x -  1) = c}.



3.2 A MINIMIZATION PROBLEM 30

By Lemma 3.5, the boundary of T  is

f TT"  ̂ • (x — 1)\ 1ar=|x x>2,nii = i+( /  'j|-
To minimize /3-x over x G T is equivalent to finding the smallest value c such that H{c) r \ T  

is not empty. Since Lemma 3.6 asserts that the minimum c occurs at the boundary of T, 

we are looking for the smallest c such that H{c) D d T  ^  0 .  In other words, our problem 

is to'

minimize /(x) := /3 • x 

subject to X > 2

a^d J(X) := n  f   ̂ =  0-

Since /  and g are both continuous functions in x, and Lemma 3.5 teUs us that x > 2 , the 

conditions for using Lagrange multiplier rule [MP, p. 360-363] are satisfied. We find A /  0 

and xo > 2  such that AV/(xq) = Vflf(xo).

Let us first compute V / and Vg.  Since /(x) = /3 • x, V/(x) = /3. Since

we have Vp(x) = 7 , where

To solve for A and Xo in the equation, AV/(xo) = V5 (xo), we set A/3j = 7 j for all j  G [»*+l], 

or equivalently,

^ j Xj  = \ I rii('^+«+/3-(x-l)) /v^r .1 V
r! i+5+ .̂(x-l) )
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for all j  e [r + 1]. Note that the right hand side of the last equality is the same for all 

j  e [ r  +  1]. Thus at the minimum, j3jXj = PiXi for all i , j  € [r + 1], and

^ (3jXj r\ +  ̂+

Let 2/ := PjXj for i  G [r + 1]. We substitute y into g{x)  to get

. [ S +  r +  {r +  l ) y  -  S S i  
(3.5) 9{y) ~~ /?■ \  ̂ '

If y* is the smallest zero of g{y)  such that y* >  2maxi{^0, then the minimum of /  is 

(j. q. i)y*. By Corollary 3.8, we know that such a y* exists. In the case where r 7  ̂ 3  or 4, 

g{y)  has only one zero > 2 maxH/?0 - (Since u = maxi{/?i} and w = U i P u  n divides w.  

Thus it can be shown that when r = 2, f {x )  has only one positive zero.) □

3.3 P r o o f  o f  T h e o r e m  3.4

In this section, we use Theorem 3.10 to estimate sharper upper bounds for the J ’̂s and 

J  from Theorem 3.3.

Proof of Theorem 3 .1  Let P(n,k) := P(n,k)/P(n,k). Fix some J > 0,

and suppose (no,ko) is a point that satisfies the two conditions of the theorem. Since we 

assumed that all of the in Definition 3.1 are integers, we have that for aU

(n,k) in some E’’+̂  neighborhood of (no,ko), all of the ratios F {n - j , k -  i ) / F ( n , k )  are 

weU-defined r a t i o n a l  functions of n and k. (See (3.1) for F{n,k) . )  Hence we can form a 

linear combination

I J

W(k) ^  J ] a ( i , i ,n )
i=o j=o

P ( n - j , k - i )  
F{ n, k )(3.6)
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of these rational functions, in which the a ’s are to be determined, if possible, so as to make 

the sum vanish, identically in the neighborhood.

As in [WZ3], the problem is to find a common denominator for the summand in (3.6). In

stead, we find a common denominator D{n,  k) for X)i=o X)f=o • Clearly, D{n,  k)

is also a common denominator for the summand in (3.6). Consider

(3.7) = i>(„ -  k -  i)z-> f [  ( - •"  +  ■>• +J^(n, k) fa*n-f-b., • k -1-c.,)!S=1 (a*n -f- bi • k-1- c*)!

A _____ ( u s T i  -f Vj • k -f tt;̂ )!______
■*■1 (u,n -f V a •  k - I -  t U j  -  U s j  -  V a • i)!3 = 1 '

which contributes .to the denominator D{n,k) ,  if

a j  -1- bs • i > 0 , and/or u^j -f Va • i < 0 .

Let Aa := agn + bj • k -f- Ca and Ua ■= Usti v* • k Wa- In (3.7), if Ugj -)- ba • i > 0 for 

some s G [p], then

A a l  ,. . , A a ldivides

But

(Aa -  a a j  -  ba • i)! (^Aa -  maX (UaJ + ba • !)■'■)! ’
0 < j<  J 
0<i<I

m ^  (Oaj + ba • i)+ = (tta)+J + V(6(a)"^/;.
0<7<J  ^
0 < K I  '= 1

Similarly, if Uaj -t- Va • i < 0 for some s G [5 ], then

{Ua -  U a j  -  Va -i)
Ual

{Ua + max { - U a j  -  Va • !)■*■)!
, 0<3<J
' , 0<i<Iivides ------------------------------------ ,

and, as before.

max
o<j<J
0<i<I

{ - U a j  -  Va • !)■'■ =  { - U a ) ' ^ J  +  ' ^ { - V u ) ' ^ I I .
1=1
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A common denominator for W (k) (see (3.6)) is

D ( n ,k )  =
s = l 5=1

Thus the degree in k of D(n,k) is

(3.8) j ( Y j («*)^) + S )
 ̂  ̂ /=! ,e[p] *e[g] '=1 *e[g]

•Vs^O

= j (E (“•)■" + E (-“>)■")+E ̂‘ (S (*'•)■' + E '
.^pfol (=1 se[p] «6[9]

»e[p]b,#0

s6[p] »e[?l
b ,^ 0  V s ^ O

Next, we find the degree in k of the common numerator polynomial A(n,k) of iy(k) of 

(3.6) after using the common denominator D(n,k) above. Consider the (i,j)th term in

F ( n - j , k - i )
F(n ,k )  i=0 3=0 '' ’ ''

After the same computation as in Chapter 1, we get that the degree in k of the numerator 

polynomial of the {i,j)th. term over D {n ,k )  is

Y ,  (-««J -  • i)+ + X)
b,9iO

+ degk D{n,  k) -  X  + b. • i)-" -  ( X  ' i)‘") + ^
v ,#0

= degk D{n,  k) +  ̂+ X  + Vs • i) ~ X  + b* • i),
v ,#0  b , 5^0

where 6 := degkP(n,k). Therefore, the degree in k of the common numerator polynomial 

in hF(k) is

degkiV(n,k)

=  ̂+ nia,x(degk D{n,  k) + X “  X
v,?to b,i^O

=  ̂+ degk D{n, k) + niax(i X '̂ X  ̂X  ̂‘ X ‘
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Let

U := Ua, V i : = ' ^ v i s ,  A := ^  a*, B r . =  Y^ b u .

* b/5^0 *

We can rewrite degjjiV(n,k) as

degk N{ n, k )  -  S +  deg^ J5(n,k) + in^^j(C/' -  A )  +

=  6 +  degk D{ n, k) + J { U  -  A)+ + ^  h(Vi -  B , ) + .
I

To simplify the expression for degĵ  iV(n,k), we let

E  + E  ••= + E(-̂ '̂ )̂ -S 3  « «
b . # 0  ^ *

Then, substituting the expression for degĵ  D( n, k)  in (3.8), we get

degkiV(re,k) = <5 + +  + -  A)~̂  + '^Ii{Vi -  Bi)+
I I

=  S +  J ( A  +  ( U -  A)+) + E ^i(® i +  ( V , ~  B , ) + )
I

r

=  ̂+ E  + Pr+lJ,
j = l

where (3j : =  3 j  + (Vj  -  B j ) +  for j  e [r], and 0 r + i  : = A  +  { U -  A ) + .

Knowing the degree in k of iV(n,k), we deduce that there are at most Af(n,k)+rj 

homogeneous linear equations to solve in (Ji + l ) ( / 2  + 1) ■ • ■ + 1)( J  + 1) unknowns,

namely, the a(i,y, n)’s. A system of solutions for a ( i , j , n ) ’s exists, if

(Ji + l)(/2 + 1 ) +  1)( J  + ! ) > ! +  k)  +  r^

In order to obtain good upper bounds for I and J ,  we minimize deg^ N (n ,  k) subject to 

the condition just stated.
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With a change of variables, x ,  := l i  + 1, /j > 1, for all i  G [r], and X r + i  := J  +  1, we 

can state our task more easily as:

Minimize /3 • x 

subject to X > 2

Let us suppose that one of {A},'6 [r+i] is zero. Say = 0 for some / G [r + 1 ], This 

means that

A = + (V, -  B t ) +

* » V s s
=  0.

Hence 6 ;, = 0 for all s G [p], and vu =  0 for all s G [?]. Therefore, ki is absent in the 

factorial part of F(n,k).

If the variable ki actually appears in P{n,  k), then the summation of F(n, k) is infinite. 

Since we consider only terminating hypergeometric identities, we will assume that the 

variable ki is absent in F (n ,k )  if it is absent in the products of factorials in / ’(n,k). In 

other words, F(n, k) is independent of ki, if j3i = 0.

Henceforth, we consider only the case where /3i, (i G [?"+1]) are positive integers. Chap

ter 1  dealt with the case where r = 1 . Thus we assume that r > 2. From Theorem 3.10, 

we conclude that ^  • x attains its minimum at
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where y* is the smallest zero greater than 2 max{/?j} of

_ _ fS +  r +  {r +  l ) y -

V  ̂ ) '

If all a;*’s thus obtained are integers, then we are done: the upper bounds for the I* are

X* -  1. In particular J* =  — 1. Otherwise, let pg be the largest zero of g. (In the

case when r 7  ̂3 or 4, is the only zero of g greater than 2 maxi{/3j} —see Corollary 3.8.)

Since g{y) —> 0 0  as y -+ 0 0 , g(y)  >  0 for all y > pg. A bound for x* is

Xi < Pg
Pi '

Thus,

I t  = Pg
P i

- 1,

and

Remarks. We first remark that the J* thus obtained is not always better than the bound 

from Chapter 1. A simple calculation shows that in Example 1.6, J* of [W2] is m, whereas 

we get J* — 2m — 2. However, Theorem 3.4 gives the best overall bounds, when all Fs  and 

J  are considered. For example, in Example 1.6, J* =  m  and /* = (m -  l)m + 1, whereas 

J* = 2m -  2 and I* = 2m -  1 using the method of Theorem 3.4.

The second remark is about the size of pg. From Formula 14 of [Wl], we know that

Pa max 
“  t6 [ r+ l ]

d r + l —i

i r + 1

where di = [y’]y(y).

The last remark is about how to find a better bound for I*. The following algorithm 

takes one or two zeros of g that are greater than 2max,-{/3j} and tests the feasibility of x* 

between the choices and
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A l g o r i t h m  1 . Algorithm for finding better upper bounds 

Input: 1/1 (if r = 2 or r > 5); yx,y% (if r = 3 or 4)

j : = l

repeat

for i := 1  to r + 1

X * —  m .
—  Pi

next i

01 := ^ Z , ie  [r + 1]}

{ ^k}k - i  ■= + €i]€i =  0 i f  01, €i =  1 i f  i e

k := 0 

repeat

^ ;=  ^ +  1

u n til n  > 1  + or k =  2 l l̂ + 1

j  := j  + 1

u n til n®* > 1  + (̂ +'■+̂ <’'* - 1 )) or j  = 2  + 1

Output: x’



CHAPTER IV

AN ALGORITHM FOR CERTIFYING = /„

In this chapter, we will develop the r-variable analogues of the algorithm in Chapter 2 . 

We will take the values oi  1^,1^, . . .  ,1* and J* from Chapter 3, and input them into the 

algorithm to obtain directly ao(n),ai(n),... ,aj(n), not all zero, and rational functions 

Ri{n,  k), R 2 {n, k ),. . . ,  Rr(n,  k).

Here Theorem 4.2A, the analogue of Theorem 3.2A in [WZ3] is what we need to con

struct the algorithm.

Theorem 4.1. [WZ3, Theorem 4.2A] Let F  be a proper-hypergeometric term. Then there 

are a positive ii}teger J , polynomials ao(n), ai(n),. . . , aj {n)  and hypergeometric'-functions 

G \ Gj. such that for every (n, k) G at which F  ^  0 and F  is well-defined at all 

of the arguments that appear in

(4.1)

we have

I J

X I S  -  y, k -  i) = 0

i=o i=o

I

(4.2) k) = X)(6'i(n, Gi{n, k i , . . .  ,ki  ~  1 , . . . ,  kr)).
i=o t=:l

Moreover this recurrence is non-trivial, and each Gi {n,k)  is of the form  Ri { n , k ) F{ n , k ) ,  

where the R ’s are rational functions of their arguments.

In the proof of Theorem 4.1 in [WZ3], we let N  be the operator that shifts (down) the 

variable n, that is N f { n )  = f { n  — 1 ). Further, for each i = l , . . . , r  we let Ki  be the

3 8



ALGORITHM FOR THE. CERTIFICATE 39

operator that shifts the variable ki, that is K i f ( k )  — /(/si,. . . ,  fcj 1, , Air)-

Then (4.1) is equivalent to an assertion

H{ N, n , Ki , . . . , Kr ) F{ n , k ) ^ 0 ,

where H  is & polynomial in its arguments and does not involve k. We can expand JT in a 

Taylor’s series about K = 1, to obtain

r

H{ N,  n, K) = H{N,  n, 1) + n, K)
t=:l

t

in which the F<’s are polynomials in their arguments. We apply the right hand side of the 

last equality to F( n, k ) ,  and (4.2) follows.

We generalize the idea from Chapter 2 to the multivariable case. From Chapter 3, we 

can compute the upper bounds for I* and J* which are used to find the degree in k of the
V,

numerator polynomial of Ri{n,k) ,  i € [r]. Into (4.2), we substitute

E
el<3\fi

C i ( e , n ) k ®

Di .̂(n,k)
,yii)

for Ri {n, k )  where the C i ( e , n )  are unknown polynomials in n. The procedure that follows 

yields a homogeneous linear system with the Cj’s and Uj’s as the unknowns for which a 

solution is guaranteed by [WZ3, Theorem 4.1].

A l g o r i t h m  f o r  t h e  C e r t i f i c a t e  

Step 1. Rename fc.’s so that h > l 2 > - - - > I r  for the given U's.

Step 2. Obtain “  l)^*(-^>^iK) in the following way. For the Taylor’s series

expansion of FT(iV, ti,K) about K = 1, we first sum all terms that are divisible
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b y  (̂ j{̂  -  1 )̂  factor { Ki  -  1) to make the sum equal to ( Ki  -  l)Vi(iV,n,K). The 

remaining terms of H{ N, n , K. )  are no longer divisible by { K \  — 1). We then 

proceed to sum all the remaining terms that are divisible by { K 2 ~  1)>

{ K 2 -  l )V2 ( N , n , K 2 , . . ■■,Kr) as the sum. Successively we sum the terms until 

we reach the la.st sum, namely, {Kr  -  \ )Vr{N, n , Kr ) -  

Step 3. Divide (4.2) by F{n,  k) on both sides to get

Ri{n^ , ki 1, . . . , ky^F{n^ k \ , . . . ,  ki 1, . . . ,  kj-')

d ( i , j , n ) F { n -  j , k - i )  
F{ n, k )

Step 4. Into (4.3), substitute for ilj(n,k)

E
0 < j < J

0 < i < ( 0 , . . . , 0 , / i - l , / , + l ...... / r )

where d’s are polynomials in n only.

Step 5. Compute a common denominator for Ri{n,k) ,  i.e.,

Dfij(ra,k) = P(n,k) J |( a jn  + b* • k + Cj) '
5=1

g
X n ( u , n  +  V. . k + » ,  +  .

S = 1

Step 6. Calculate the degree in k of the numerator polynomial N r  ̂(n, k) over the de

nominator polynomial D/{,(n, k).

>f,- ;= degitP(n,k) + (/j-l)(® t + (Vi-5i)^)-(-J(yi+(t/-A)''')+ ^  /t(®t + (Ti~Pt)^))
i < t < r

where (as in Chapter 3)

U : - ' ^ U s ,  V i : = ' ^ v i s ,  A ^  a*, B r.=  ' ^ b i s ,  
v/^o * "

3
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and

A : =  (a^)+ + ^  {-Ua)'^, 'Bi :=
3 S S Sv,9̂ 0

Step 7. Conclude that i2t(n,k) has the form

E
0<e<(Ni,Ni,

e l < 7 ^ i

Cj(e,n)k®
,X ,)

Step 8. Substitute J7j’s into (4.3), and collect all terms to one side of the equal sign. 

Step 9. Find a common denominator for the resulting expression and make the coeffi

cients of each monomial in k zero.

Step 10. Solve the resulting system of homogeneous equations for the U j’s and Cj’s. Again 

we are guaranteed that a solution exists from Theorem 4.1 in '[WZ3].



CHAPTER V

SOME HYPERGEOMETRIC IDENTITIES ARE ALMOST TRIVIAL

ZeilLerger [Zl] once claimed, All binomial identities are verifiable. His reasoning went 

as follows. Let F{n, k) be a hypergeometric term. Then F{n, k) satisfies a recurrence 

with polynomial-in-n coefficients. If we want to prove that k) = /(n) for some

hypergeometric term /(n), then we need to check that /(n) satisfies the same recurrence 

as /(^) agrees with ^  relevant n’s less than or equal to

the sum of the order of the recurrence and the highest integer zero of the leading coefficient 

of the recurrence. Since there are only a finite number of cases to check, it is sufficient to 

verify F(n, k) = f { n)  with a pocket calculator.

However, no a priori bounds for the recurrence or the highest integer root of the leading 

coefficient were known at the time of the paper. In order to obtain an effective algorithm 

for proving a hypergeometric identity, we make use of the mathematical tools developed 

in [WZ3]. Using the terminology of [WZ3], we consider only admissible proper-hypergeo

metric terms to obtain a recurrence of the sum from that of the summand. In this chapter, 

we consider the case with one summation index, and calculate an a priori bound for the 

number of n’s for which the hypergeometric identity F{ n, k)  =  /(n) should be checked 

to establish the truth of the identity. These a priori bounds are quite astronomical in size, 

but they aie finite, and pre-computable. (See the end of this chapter for examples of the 

sizes of the bounds.)

4 2
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Main Theorem. Let

F{n,k)  =  P{ n, k)
nLi(“s” + + “'O-

be an admissible proper-hypergeometric term, and P(n,  k) be a polynomial with coefficients 

in Z. Let

X := max{|a,|, l̂ ]̂, jĉ l, |wa|,
S

y : =  max{p,g},

z  := m:« |[n-̂ A;’]P(n,A:)j,

d := 1 + max{degfc P(n, k), deg„ P{n,  k)} ,

and let no be a given integer. If ^

no < n <  (3a;y) (̂‘̂ +̂ )''(2xi/)«̂ 5(£i+i)(2a:i/)®̂ (d+i)(2Ej/)̂ ^

then Y!ik F(n,  k) =  1 for all n >  nn.

Note that if we would like to prove that = / ( ”) for some hypergeometric

term /(n), then dividing both sides by /(n), we get E f c = 1- What remains 

is to check whether F { n , k ) / f [ n )  is an admissible proper-hypergeometric term before we 

can apply the theorem.

We first state and prove the following theorem which contains a much better bound, 

but the bound is in an even more complicated form (5.13).

Theorem 5.1. Let

F{n,k)  = P( n, k)(5.1)
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be an admissible proper-hypergeometric term, and P{ n , k )  be a polynomial with coefficients 

in Q. Then, given no, there exists an effectively computable positive integer ni such that 

i f Y , k F { n , k )  = 1 for all no <  n < ni ,  then T , k F { n , k )  = 1 for all n >  no- {See (5.13) 

for n \.)

First we claim that it suffices to prove Theorem 5.1 for those polynomials P{ n , k )  with 

integer coefficients. For if P{n,k') is a polynomial with coefficients in Q, then P{n,k') 

P { n , k ) l dp  where P{ n , k )  is a polynomial with integer coefficients and dp is the least 

common multiple of the denominators of the coefficients of P(n, k). But in order to prove

that

+ ' ^ s k + W s ) \
=  1,

it is equivalent to prove that

l[l=iiO'sn + bsk + Cs)l k __ ^

5.1 E x a m p l e s

In this section, we show some examples of hypergeometric identities whose leading 

coefficients, ao(n), in the recurrence equations vanish at embarrassing places of n, namely 

those n where the hypergeometric identities hold.

Why does a vanishing leading coefficient, ao(n), in the recurrence relation present a 

problem? Given a proper-hypergeometric term F{n,k)  and an integer no, suppose we 

want to prove — 1 all n > no. We know that satisfies some

jfc-free recurrence of the form

n > no.
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for some positive integer J  <  |6j| + I?;,]. (See [WZ3] Theorem 3.1, or a sharper

bound in Chapter 1.) It is easy to check if 1 (the RHS) also satisfies the same recurrence. 

That is, we need to check if

(5.2) ao(w) + ai(n)H---- + aj(n) = 0

for all n. To do so, we use the fact that if a polynomial, P, of degree d has d-\- 1 zeros, 

then P  = 0. Thus it suffices to check that (5.2) is true for 1 + maXjg[j]o degaj(n) different 

values of n. In addition, if ao(n) ^  0 for all n > ng, then we can divide by ao(n) to get

(5.3) J^Fln,k)
k

_ -  l>fc) + a2{n)Y, f .F{n - , 2 , k )  -j---- + a j { n ) Y , k  ~
ag{n)

Now, (5.3) is a Jth  order recurrence in n for so if ^ k F ( n , k )  =  1 for ng <

n <  max{no + ^ -  l,no + maxjgfjjg degaj(n)}, then it follows (by induction and using 

(5.2)) that F{ n, k)  = 1 for all n > ng.

However, if ag(n) vanishes for some n > ng, then (5.2) and (5.3) does not hold at 

that particular n. In order to use the recurrence relation to establish the identity, we 

need to know an integer na > J  such that ao(n) does not vanish for all n > Ua, and 

check individually that P(n,fc) = 1 for aU n G {no,«o + ! ,• • • ,max{no -  1 +  J,ng +

maXj-g[j]odegaj(n)}}. □

The first example shows that ni in Theorem 5.1 depends on the coefficients of P(n,k) .  

Example 1. Suppose we wanted to evaluate the sums

S n  =  + n > 0.
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We show that s„ satisfies the following recurrence relation,

(n -  16)(n -  l)sn+i -  2n(n -  15)s„ = 0.

Let

F{ n, k)  =  { k ' ^ - 9k  +  4 ) ( l ) ,  and /n(a;) =

Then

= (1 + a;)”“  ̂ (n(n — l)x^ + na;(l + a;) — 9na:(l + x) + 4(1 + a:)̂ ) .

Therefore = /n(l) == — 17n + 16), and = /n+i(l) = 2 ((n + 1) —

17(n + 1) + 16). Prom the expressions of s„ and s„+i, we conclude that our desired sums 

satisfy the recurrence

(n -  16)(n -  l)s„+i -  2n{n -  15)sn = 0,

or equivalently.
2n(n -  15) , ^ „

S n + I = 7------- t::7 7 — — Sn  for n >  16.
(n -  16)(n -  1)

Notice that the recurrence relation can be used to calculate Sn successively only if n > 16, 

because the leading coefficient vanishes at n = 16 and n = 1. Thus, if we check individually 

that /„(1) = Efc ifc) forn = 0 ,1 ,..., 16,17, then we can use the recurrence relation 

to calculate for n >  18. In this example, ni  of Theorem 5.1 is 18. □

Example 2. In this example, we show that ni depends on the coefficients of P { n , k )  and 

niight be arbitrarily large.



5.1 EXAMPLES 47

Fix a large ni G N. We consider more generally,

F{n ,k )  =  {ak"^+ bk +  c ) ^ ^  and /n(a:) =

We take the given ni and find a, 6 , c in Q such that the sum

s^ =  ’̂ F { n , k )  =  fn i l )
k

satisfies a recurrence relation whose leading coefficient, ao(n) vanishes at m  -  2 .

After a similar calculation as the one in Example 1, we obtain the recurrence

(an^ + n{a + 26) + 4c)s„+i -  2(a(n + 1)̂  + (n + l)(o + 26) + 4c)s„ = 0.

The coefficient of Sn+i vanishes at
- ( a  + 26) ±  V(a + 26)2 _  igac

n = —-------------- t; •2a

If the discriminant is greater than 0, then the larger of the two roots is

. - (a  + 26) + y/ ja  + 26)̂  -  16ac
” “  2 o  ̂ ■

If we find some positive integers a  and (3 such that gcd(a,^) = 1 and a > /3 satisfying

(a + 26)2 ^  + ^ ) 2

16ac = 4a(3

simultaneously, then

+ 26)2 _ iQac =  \Z(a -  =  a  -  (3.

In this case,
. (a + /3) + (g- /?)  _  «

” “  2 a a'

Since we want n* =  ni -  2, we can take a = 1 , a = ni -  2 , /3 = 1. It follows that

, - { a  + f 3) - l  _ a / 3
6 = -------------- 2-------------- ’ 4 ’

and n* = a = Til -  2. ^
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Example, 3. This example shows that even if the summand F{n ,k )  consists only of 

factorial parts, and does not have a polynomial part, then it may happen that the leading 

coefficient of the recurrence satisfied by the sum vanishes at some positive integers n where 

Y,k summable for those integers.

Fix a large rii G N, and take the summand in Saalschiitz’ identity,

(a + /; -  !)!.(& +  k -  1)! n\ ( -a  -  b + c + n -  1 -  k)!
/^i(n-k)!(c + k - l ) !

Then Saalschiitz says that

u\ — (c -  g)”(c &)" __ r}^F{n,k)- ^ by

It is easy to check that F { n ,k ) l f n  satisfies the hypothesis of Theorem 5.1. The recurrence 

for /„ is

(n + c)(n +  c — a — b)fn+i — (n + c — a)(n + c — b)fn = 0.

It suffices to pick a, 6 in Z and c := — (ni -  2). □

5.2 Two APPROXIMATION LEMMAS

Notation. We use [n] to denote {1,2,... ,n}, [n]o to denote {0} U [n], and [x"^y^]P{x,y) 

to denote the coefficient of in P(x ,y ) .  We use P ( n ,k )  =4 fo mean that for

all pairs of integers, (m,/), \[n'^k^]P{n,k)\ < \[n'^k‘]Q{n,k)\.

We need the following lemmas for the proof of Theorem 5.1.

Lemma 5.2. Let P { n ,k )  be a polynomial in n and k with integer coefficients, and let

u =  max \[n’̂ k^]P{n,k)\, D = deg„ P(n, fc), and E = deg*. P(n, A:). 
lelBlo-meplo
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Then for every positive integer J ,

max 
JG[E]o .*’1 G[D]o

\ [n ^ k^ ]P { n- j , k ) \ <{ l  + J )^p .

Proof. Suppose P{n,k)  = T,m=o'^‘rnk‘n'^. Then, \[k^n”̂ ]P{n -  j ,k)\  is

J= 0  '  ' t=o '  '
= ( 1  + J)^p

max \[n'^k‘]P(n,k)\
/ € [ £ l o . m € [ C l o

for all j  € [J] U {0}, I G [£̂ ]o and m  G [J?]o- □

Lem m a 5.3. Let Q(n,k) = ris=i(® 3 ^ + where as,bs,Cs are integers. Then

max
m , / € [ 9 ) o «€l9]

Proof. We know that

9r
3=1

Q{n,k)  =  J][(aan + bsk + c,)

(n + A: + 1)® J J  max{[as|,|6,|,|ca|}.
s€[9]

Since the absolute value of the largest coefficient of (n + A; +  1)® is the trinomial coefficient

max
m,/e[9]o |[n"‘A:']Q(n,A:)| < 9 -  [fj ~ T fl) ^  max{|a,|, |6,|, |c,|}

< 3’ n  max{|a,|,|6s|,|Ci|}. □
s€[9]
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5 . S ' S o l v i n g  a  h o m o g e n e o u s  s y m b o l i c  l i n e a r  s y s t e m

Definition. Let M be an / X  m matrix over the field of rational functions over Q. Define 

the generic rank of M  to be the number of non-zero rows in the reduced rdw-echelon form 

of M . Since row rank (M) = column rank (M) = ranTr (M) from [H, p. 337], the generic 

rank is the classical definition-of the rank of a matrix over a division ring. Henceforth we 

use rank to mean the generic rank.

In this section, we consider a special class of matrices M , I X m  such that I < m, and 

Mij ,  the entries of M, are polynomials in x with integer coefficients. Since M is a subset 

of the matrices over the field of rational functions, the rank of M  is well-defined.

Let X be an m X  1 vector with indeterminate polynomial entries, {a„(a;)}f, with integer 

coefficients. The problem is to solve for x in Mx = 0 , for some M  of non-zero rank. After 

obtaining a solution for x, we estimate the degree and the largest coefficient of a„(a:), for 

n e [m].

The following is a procedure for finding x. Let Mx = 0 be a system of homogeneous 

linear equations su,ch that

(1) M  is I X m,  I <  m,

(2) entries of M are polynomials in x with integer coefficients,

(3) M  has rank p > 0,

( 4 )  X* =  ( a i ( a ; ) , . . . , a m ( a ; ) ) ,

(5 ) wlog, assume ai(x) is not identically zero.

Then x can be obtained from the following procedure.

Step A. By renumbering the unknowns, if necessary, and permuting the columns of M,
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we can arrange that the first p columns of M  have rank p.

Step B. Interchange the rows of the resulting matrix from (1) above to make the p X  p 

upper left hand corner of M, called M', a square matrix of rank p.

Step C. Set all but the first p variables in the new x to 1.

Step D. What remains is a system of p inhomogeneous linear equations in . . . ,Xp^

say M'x' = y'. We note that y' 0. For if y' = 0, and M'  is of full rank, then 

the only solution to M'x' = 0 is the zero solution. But x' has ai {x)  as its first 

member, and ai(x) is assumed to be non-zero.

Step E. Use Cramer’s rule to find the unknowns x', namely;

„ , det M' . . Vthe rath entry of x = (n = 1 ,..., p).

In particular.

ai{x)
de t M{
detM '’

Step F. To make the solution for x a polynomial solution, we multiply x by det M'. Since 

M' is obtained from M  by interchanging rows and columns, the entries of M' 

are still polynomials with integer coefficients. Therefore det M' is a polynomial 

over Z. Similarly, each has entries over Z[x], for entries of y' are sums of 

some entries in M.  Thus'the complete solution vector is

the new x = (det M [ , . . . ,  det M ', det M ',. . . ,  det M')*.*

5 .4  S u f f i c i e n t  c o n d i t i o n s  f o r  a  p o l y n o m i a l  n o t  t o  v a n i s h

Given {an{x)}'!^ from the end of §5.3, we find in this section upper bounds for the 

degrees and the largest coefficient of the '{'an(2:)}f'- With these bounds, we apply
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Proposition 5.4. Let a{x) 6 Z[a;], let d =  dego, and let m be max,g[d]g |[a;‘]a(a;)|. Then 

a(x)  ^  0 for all x >  md.

Proof. Let

a(x) =  ao + aix + a2x' -̂\------ hOdx’̂ , ad ^ 0, (all a,-6 Z).

Then for sufficiently large x,

a(a;)| > x^\ad\ -  + -----h oo]

>  x ’̂ \ad\ -  x ‘‘~^d ■ max{|ao|, |ai , |a<i_i |} 

= x‘̂ -^(ar|ad| - d -  max {|aj|}) > 0,
j6 [d -l]o

if

X >
c(maxjg[d_i]„ Ifljl

kdl

Since ^  0 and oj 6 Z, the latter surely holds if a; > md. □

We estimate the degree of a„(a:), n G [m], from det M' and detM^, the polynomial 

solutions for x.

Let

fi ;= max {deg Mij{x)  | i £ [l],j G [m]} ,

then degdetM'(x) < p f i  for the following reason. Since M'  is obtained from M  by inter

changing rows and columns, degM-j  <  p,  for i , j  G \p\. We conclude that deg(det M'{x) )  <  

P fi  because rank(M') = p .  -Similarly, deg(det M!^{x)) < p p  because M!  ̂ is obtained from 

M  by interchanging rows and columns of M, and by adding some columns of M  together 

to make y', then replacing the nth column of M'  by y '  to get M '.
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Next we estimate the heights of the a„(a:)’s, i.e., maxfee[pp] l[a;'']a„(a;)l for n G [m]. Let 

c := max [ \ [x' ^]Mi j {x) \ \ i e[ i ] , j  £ [ m ] , k e b A } ,

then

max |[a:'']M;,(a:)| < c and m ^ \ [ A i K h { ^ ) \  < ~
i,j,k •'

again from the ways M'  and are obtained from M. With an upper bound for the 

maximum coefficient of M',  we estimate max*, |[a;''] detM'(a:)l using the definition of the 

determinant. By the definition of the determinant, we have

det M'  =  sgn(cr)ei,^(i)e2 ff(2 ) • • • p̂a{p)

Y2 N i <7(1)^2ct( 2) • • • e pc r (p ) l

(T gSp

Thus

mzoc|[a:'']detM'| K p l c ^ i n + i y .

Similarly,

max I [a:*’] det I < p!((m -  p)cY{p  + 1)̂ - 
k

5.5 T he leading coefficient, ao(n), of the recurrence

We estimate the degree of the leading coefficient, ao(n), in the recurrence of F{n,k)  

as a polynomial in n, and Ua, the positive integer with the property that for all n > Wa, 

ao{n) Y  0. The plan for achieving this goal consists of the following four stages:

Stage 1. Take a given admissible proper-hypergeometric term F{n,k) ,  and use Theorem 

3.2A of [WZ3] to say that F{n,  k) satisfies a recurrence of the form:

(5.4) ao{n)F{n,k)  +  ai {n)F{n  -  l,fc) + •• • + aj(n)T’(n - J , k )  =  G{n,k)  -  G { n , k -  1),
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where the aj(n)’s are unknown polynomials in n. Divide (5.4) by F{ n, k)  and 

put the resulting sum of rational functions over a common denominator.

Stage 2. Equate the coefficient of each power of k in the common numerator to 0, and 

solve the resulting homogeneous linear equations for the unknowns aj(n)’s and 

Cj(n)’s (see (5.5) for Cj(n)’s) by Cramer’s rule for ao(n) only, in the form

det M[

(See §5.3 Step E.)

stages. Observe that ao{n) =  0 exactly when detM( = 0. Therefore, we express 

detM( as a polynomial in n, and obtain an upper bound for the degree of 

detM( (see §5,6 formula (5.11)) and the largest coefficient of det (see §5.6 

formula (5.12)).

Stage 4. Use the simple fact that if a{x) is a polynomial over Z, d is the degree of a{x)  

and m  is maXjgjdjg'l[a:®]a(a;)|, then a{x}  ^  0 for all a: > md.  (See Proposition 

5.4 in §5.4.) Thus we use the estimates in Stage 3 to obtain an Ua such that 

for all n > na, ao(n) ^  0.

We now proceed to do Stage 1 of the plan in detail. Let an admissible proper-hypergeo- 

metric term F{ n, k]  be given such that P{ n , k )  in F{n,k)  has integer coefficients. Recall

that

F{n,k)  =  P{ n , k )
;j(us?z -f- bgk -|- Cj)!

Then Theorem 3.2A of [WZ3] guarantees us the existence of polynomials ao(n), ai(n),. . . ,  

aj {n) ,  not all zero, an integer, J  < l̂ sl + bsl? aJid ^ function G{n,k)  such that
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G{n,k)  =  R( n , k ) F{ n , k )  for some rational function R  and such that

(5.4) ao(n)F{n,k)  +  a i (n)F{n - l , k )  +  ■ ■ ■ +  a j {n) F{ n  - J , k )  =  G(n,k)  -  G{ n, k  -  1 ).

Without loss of generality, assume aQ{n) is not identically zero. Prom Chapter 2, we may 

assume that J2 (n, k) has the form

D R { n , k )

for some polynomials, c,(n) (e e ’[N]o), where

N = degfc P(n, A;) + J{ A  +  {U -  A)+)  + (I -  1)(S + (V -  B)+).

(See Theorem 1.4 for the definitions of yi, 3 ,  A,  B,  U and V.)  Dividing both sides of (5.4) 

by F{n,k) ,  we get

Ci{n)k̂

DR{n,k)  D R { n , k ~ l )  F{n,k)

Putting (5.5) over a common denominator D{n,k) ,  we find that we can take

p
D{n,  k) := P{n,  k) JJ(ttsn + bgk + Cj)-

5=1

X  ^ ( « s r a  +  b g k  +  C s - b s  +  ] ^ ( u s n  +  V g k  +  Wg -  V s ) - — "—

Next we collect all terms of (5.5) to the left side to get

Lq Li  L j  — j?i -f i?2
jD(n, k)

(5.6)
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where for 0 < j  < J,

Lj{n,k) := aj{n)P{n -  j,k)Y[{as'n + h k  + c* + 1)̂ ^

X +  bsk +  Cs -  ( a s ) + J  +

X PJ(asn +  bsk  +  C s -  ba +  1)̂ *’*̂ '̂
S

X J^(a 4 n + bak + c, -  ( c s ) ' * ' ■
3

X JJ(ujn +  Vak +  +  ( - u j -
3

X J][(tijn +  Vak +  Wa)-'^-~

X ] ] [ (U in  4- Vak 4 -^ 3  +  { - U a ) ' ^ J  4- 1)^^
3

X 4- Vak + Wa-  ~

and

Ri{n, k):=  [ ^  Ci(n)fc‘^ JT(aan 4- bak + Ca -  (a ,)+ / -  {ba)'^T 4-
\ t= 0  /  s

X J J ( a , n  4- bak +  Ca -  ba +  1)̂ '’*̂ '̂
3

X J |(tisn  4- Vak 4- 4- { -U s ^ J  4- ■
3

X J J ( U s n  4- Vak +  W s -  Vaf ■,

and

\j=0 i=j

X JJ(asn 4- b a k  4- Cj 4- 1)̂  JJ(asR 4- b a k  4-

X JJ(usn 4- V a k  +  J][(ws« 4- V a k  4- in* 4-1)^

R2(n,k)  :=
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We now do Stage 2 of the plan. Our goal is to find an expression for ao(n). To solve 

for the unknown polynomials in n,

we expand the terms of (5.6), and collect like powers of k. Since LHS of (5.6) is zero, 

the coefficients of k ‘ must be identically zero. This yields a system of linear homogeneous 

equations. We then express the system as M x  =  0 ,  x ‘ = (ao,ai,. . . , aj,Co,Ci,... ,c>r), 

and the ith row of M  corresponds to the coefficients of k'~^ in the common numerator of 

(5.6). We axe now set to apply the procedure in §5.3 for finding a polynomial ao(n) using 

Cramer’s rule.

Stage 3 of the plan consists of three steps. First, we find an upper bound for the 

maximum degree of the entries of M . (See Lemma 5.5.) Second, we find an upper bound 

for the largest coefficient of the entries of M . (See Lemma 5.6.) With these estimates for 

the entries of M , we find upper bounds for the degree and the largest coefficient of det M{ 

(= Oo(n)) using §5.4.

Step 1. An upper bound for the maximum degree of all entries of M  regarded as a 

polynomial in n.

Lemma 5.5. Let

/xi := deg„ F(n, k) +  ( I  +  1)® + J{A  +  (U -  i)+ ),

a:a,^0 s;Uj5̂ 0 «e[p]

= Z  ^  = Z
«€[?] «e[p]

where
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and let

Then

fj,2 := max ^
O j ^ O  U i T ^ O  U j ^ O

m axdegM ij(n)  < 
•J

+

Proof. Let fj, be the maximum degree of the entries of M. By the setup, M ij  is the 

coefficient of that is, P(n — j , k )  times the first elementary symmetric function when 

the product

a j { n ) P { n -  j , k )

is viewed as a product of terms of the type (b^k + da(n)), where ds{n) is a polynomial in 

n of degree 1 at most. Therefore, degMjj < deg Mi j for 1 < j  < J  + 1. But

degM ,,(n) =  deg„P(n,i) +  (J +  1 -  j)  j

+ y + 1) f E + E  (-”•)'") + - 1) (E(-“>)̂  + D ’*-)'"') '
\ a , 5 ^ 0  /  \  s a /

for 1 < j  < J  + 1. Thus

maxdegMij(n) = deg„P(ra,A:) + ( /+  1 )® + J { A  +  {U -  A)+) = fxi,

where

a , ^ 0  u , ^ 0

^ = X “ ’̂ i  = X “ -̂

For 1  <  i <  v , J - \ - 2 < j <  7 + 2 + K, M^ is the polynomial (in n) multiplied by 

fc‘“^Cj-_(j+2 )(«)- To find degM.j, we compute R\  and R 2 to conclude that

degMij < max X  1̂ *1 + X  2 X  + 2 X  |  =  P2 -
ai j iO  t i j ^ O  u , ^ 0  I
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Thus fi < max{//i,/Z2}. □

Step 2. An  upper bound for \[n‘]Mij{n)\.

We note th a t Mij  is the polynomial in n multiplied either by aj-i{n)k*~^  for all i G [u] 

and i  G [J  +  1], or by for * G W] and j  > J  + 2. F irst, we com pute an upper

bound for maxi,j,i |[^r^]M<j(n)| for all i and j  &[J + 1]. The param eters in c* and Wg are 

fixed arb itrarily  in this step.

s:6 ,>0ig[i,+]

^ n  n  max{|u,|,lus|,lws -  Uj + 1 -  f|}
s:v’.< O i e [ ( - v , ) + ]

 ̂ n  n  max{KU^'s|>k, -  7 (a + )+ 1 -  i|}
s:6.>0ie[j({,+ )]

X n  n  max{|u3l, |usl, \ w s  +  (-U s)+ J +  i|},
s:v ,< o  t e [ r ( - t ) , ) + ]

n  n  max{|as|, |6a|, |ca + i|}
V a , < O i e [ j ( - a , ) + ]

X n  n  max{|os|,16,|,lc* -  Ja+  + *1}
5 : a ,> 0 j £ [ ( j _ j ) a + ]

^ n  n  max{|Ms|,|us|,|u;s +  +  1 -  i|}

Let

E  D

P{n ,k)  :=  ^  ^  t i m n ^ k \
1=0 m = 0

P3 := (1 +  /) '^ m a x { |t( ,„ | ; I 6 [.£]o and m  e  [L>]o},

ei := J{A  +  (Ci _  A)+) +  ( /  +  1)( bt +
8  S

and
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We know from Lemma 5.3 that

P{ n -  j ,k)fi iH5(n +  k +  1)®L
C2> 4

Moreover, Lemma 5.2 states that

max|[n'”fc']P(n -  < /is

for all i  e [7]o- We conclude that the largest coefficient of M,j for i G [î ] and j  E [ J  +  1] 

is bounded above by

(D + 1)(P + l)/iS/i4/i53  ̂•

Now we find an upper bound for the largest coefficient of M i j + j + 2  for i G [i>] and 

j  >  0. As we observed before, M jj+j+ 2  is the polynomial in n multiplied by Cjk . By 

expanding R\  and R 2 , we get

I 1 R 2

Let

f ie  ■= TT f  TT m a x { | a s | ,  |6j | ,  |cs -  J a j"  - +  *1} X m a x { | a s l ,  |fes|, |cs

s:6,>0 \e[6+]

X ]][ f max{|ual,lu,|,|u;5 -  U3  + 1 -  i|}
s-.v,<0 '^tG[(-«',)+]

X max^UsI, |us|,\ws + J(-Us)'^ + I{-Vs)'^ +  1 -  i |} ^ ,

/i7 := n  I I  max{la4l,|6s|,|cs + i|} H  H  max{lasl, |6sl, |cs +  1 -  i|} 
»:i>><0ie[(-6,)+] s:(>.>0i6[b+]n n maxdusU^aMw'i + *1} n n  max{ltis|, |usl, \ws  +  1 — i|}.

4:uj<0ig[(-u,)+] s:v ,>0
X
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and

«2 : =  2 ’

»3:=EN + EI">I-

By 'Lemma 5.3,

max
m,i

[n’̂ k'] _________ ^2_________ resp. max
m , l

[n^k ’(sSf)!)
is bounded above by

(resp. 3®̂ /i6).

Thus, from the expression of M ij, we conclude that the largest coefficient is bounded above

by

Let

fj.8 := max {(!> + 1){E  + 2̂ 3®® ̂ 7  + 3®̂ /X6} •

Then the largest coefficient of M ij for ji G [X + J  + 2] and i £ [r/] is bounded above by /ig. 

Thus we have

Lemma 5.6. The absolute value of the largest coefficient o f the entries of M  is bounded 

by fis.

Step 3. Upper bounds for deg det M{ and maXi j[n’] det M [ ].

We take the M ' and M{ obtained from §5.3, and perform the computation of §5.4 to get

deg det < rank(M') X max{/ii,/i2},
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where and ^ 2  from Lemma 5.5, and

max|[n‘]d e ta il < p! ((7 + N + 2 -  p)^s(l + max{/ii,p2 }))^, 

where p :=rank(M').

Stage 4 is the application of Proposition 5.4 using the bounds we just calculated in Step 

3 above. We have now completed the computation needed for the proof of Theorem 5.1.

5.6 P r o o f  o f  T h e o r e m  5.1

Proof o f Theorem 5.1. Let {n,k)  G be a point at which F( n , k )  ^  0, and such that 

F( n — j , k  — i) is well-defined for all i G [/]o and j  G [7]o, where I  and J  are some integers 

bounded above by the expressions found in [WZ3, Theorem 3.1] or a sharper bound from 

Theorem 1.4. By Theorem 3.2A of [WZ3], there exist polynomials ao(n),ai(n),... , a j { n )  

not all identically zero, and a function G{n,  k) such that G{n,  k) =  R[n,  k)F{n,  k) for some 

rational function R  and such that ao(n) is not identically 0 and

(5.7) ao{n)F{n,k)  -b ai {n)F{n -  l , k )  + ----h aj {n) F{ n  -  J ,k)  =  G( n , k)  -  G{ n , k  -  1).

Prom Step 3 of Chapter 2, we know that for

X ;= degfc P{n,  k) -f J { A  +  {U -  A)+)  +  {I  -  1)(® +  {V -  B)+) ,

where A, B , U, V, A, ' B  axe defined in Theorem 1.4, the rational function R( n , k )  in (5.7) 

assumes the form

D R { n , k )

Substituting the expression for R(n,k)  into (5.7), then dividing both sides by F( n , k ) ,  we

get an equation of rational functions 
(5.8)

ao(n) -I- ai(ra) F{n — l , k )  
F{n,k)

H----+  aj {n)
F { n - J , k )

F{n,k)
= R(n,  k) -

R{ n , k  — l)i^(n,A; — 1 ) 
F{ n, k )
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A € 0 1 1 1 0 1 0 1 1  denominator for (5.8) is

D{n, k)  := P( n , k )  ]][ (asn + is/s + ĉ )
se[p] se[q]

X J | (a'sW -F- bgk + Cs - b g  + J][ (ugn +  Vgk + Wg -  Vg')-
s6[p] se[g]

Thus, (5.8) is equivalent to

(5.9) A q  +  . t i  + '  • • • +  Lj — Ri +  'R^ = 0,
D{n,k)

where i ,  ’s and .R, ’s are defined following (5.6) in §5.5.

Expanding (5.9), collecting the coefficients of like powers of k, and setting them to 

zero, we get a system of homogeneous linear equations with unknown polynomials in n.

namely ao, c i , . . . ,  a j ,  cq, ci, . . . ,  cj .̂ Let us use Mx = 0 to represent the system. Let i/ be 

1 + deg(common numerator of (5.9)), then

1/ < 1 + deg;, P{ n , k )  + J { A +  ( U - A ) + )  +  J(® +  { V - B ) + )  +  'B.

The matrix M is p- by 2 + .Z + 3sf, of rank p > 0, and the ith row of M  corresponds to 

the coefficient of k'~^ in the numerator of (5.9). Furthermore, ao(n) is assumed not to be 

identically zero. The sta^e is now set to apply the procedure for solving for ao(n) in §5.3.

In the solution set thus obtained, aU of the â -’s and c,’s are either equal to 1 or are 

certain rational functions. To get a polynomial solution (that may have common polyno- 

mial-in-n factors), we multiply x by det M ' . Henceforth, we take det M{ as a, polynomial 

solution for ao(n).

Our goal is to bound real zeros of ao(n) from above for the following reasons. If |oo(^)| > 

0 for all n > Ua, then summing (5.7) over k yields a recurrence for Y!,k

(5.10) ao{n) ^  F{n,  k) + oi (n) ^  F( n  -  1, A;) + ----h aj {n)  ^  F{n -  J,k)  =  0.
k k k
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To show that 1 also satisfies the recurrence (5.10), i. e. that

ao(n) + ax(n) + ••• + a j(n) = 0 Vn,

we use the fact that if a polynomial P  of degree d has d + 1  zeros, then P = 0. Therefore 

it suffices to show that 1 satisfies (5.10) for

where ao(ra) 0 (n > Ua). We thus have

(a) A;) = 1 for no < < maxjno + J  -  1, no + max^ ĵj];, deg aj(n)};

(b) both F{ n, k)  and 1 are uniquely defined for all n >  Ua]

(c) both ' ^ k F { n , k )  and 1 satisfy the same recurrence relation.

By induction, (a), (b), and (c) imply that F{n,k)  = 1 for aU n > no-

We devote the rest of the proof to estimating degdetM(, maXjg[j]o deg aj(n), and ni-

Observations.

(1) The entries of M  are polynomials in n with integer coefficients because P ( n , k )  is 

assumed to have integer coefficients, and Ws and c* are fixed integer parameters.

(2) The maximum degrees of entries of M'  and M- (i G [p]) are bounded by the

no <  n <  max{na + 7 — l,no + max degaj(n)}.
i€(J]o

If it does, then we can use (5.10) to calculate 1 and P(n, k) in the following way:

1 =  -

a i { n) f ( n  -  1) H------h a j { n ) f { n  -  J)
ao{n)

and

k

(^) E/k F{n -  1, fc) + ■ • • + aj {n)  Ejk F{n -  J,k)
oo(n)

maximum degree of the entries of M  because of the way we obtain M'  and M- 

(i G [p]) from M.
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Let aoo + + • • ■ + aodU'̂  = ao(n) (= detM{). Then by Proposition 5.4,

ao(n) 0, if

n > d -  max |ao7-|.
0 < j < d —1

To find an upper bound for d, we use Lemma 5.5 which gives us a degree bound /i for 

the entries of M.  From the second observation above, n is also a degree bound for M[  

{i G [p]) and M ' . Thus

(5.11) deg det M /< pp <  ̂€ [p],

and

degdet < Pfi <  vfj,,

where i/ <  1 +  deg*. P{n,  k) + J { A +  (U -  A)+) + I { 3  + (^  -  B)'^) + S. From Step F of 

§5.3, we know that

max degaj(n) < max.{degdet Af^jdegdetikfj,... ,degdetM ',degdetM ) < i/fi. 
je[J]o

To estimate maXjg[d]o{koj|}, we use Lemma 5.6 which gives us ps,  a bound for the 

coefficients of the entries of M.  From the way we obtained M{  from M ,  the absolute value 

of the largest coefficient of M{  is bounded by + J  + l)p8-

Finally we compute an upper bound for the absolute value of the largest coefficient of 

det M{.  Let w := (>f + J  + l)pg and p := max{pi,p2 }- In other words, u  is the computed 

upper bound for the absolute value of the largest coefficient of the entries of M {; and p is 

the computed upper bound for the maximum degree of the entries of M { .
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By the definition of the determinant, we have

de i M{  = ^  sgn(o-)ei<,(i)e2 a(2 ) •••epa(p)
<reSp

ceSp
4  + ■ ■ ■ + n + l y ■

Hence

(5.12) max|[n']detM(| < + 1)".

Putting (5.11) and (5.12) together and using Proposition 5.4, we conclude that ao{n) 

does not vanish for all n > /xp X + i y { = :  ria).  Knowing Ua,  we calculate

(5.13) ni =  max{no +  J - l , n o +  max degaj(n)}.

(See the discussion following formula (5.10) for the way we arrive at ni.) Since

max deg aj(n) < p/x C  Ua,

and no is usually very small compared to p, we can take ni to be na + tf -1  for Theorem 5.1 

Otherwise, ni = max{^z/p!o;‘'(/x +  l y  +  J  -  l ,no +  / p̂} will do. □

We next compute a cruder but simpler ni. Given F(^n,k), an admissible proper-hyper-

geometric term, let tim G Z,
E D

1=0 m = 0

and F{ n, k)  = P{ n, k )
iy,=-i{asn + bsk + Cs)\ k

+ vtk + wt)\

such that F{n,k)  satisfies a non-trivial recurrence relation, ai j {n)F{n -  j , k  -  i) -  0 

for some positive integers /, J  bounded by the result of Theorem 3.1 in [WZ3], or a sharper 

bound in Theorem 1.4. Let

X := max{lti,„|, |as|, |5s|, |cs|, |nt|, |ut|, l^tl : I G [E]o,m G [H]o»s G [p],t G [q]}-
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Then

M  ̂^{P + )̂('̂  + I  + I) + D,

M3 ^ + 1)^^?

Ms < ({J +

ei < iP + Q) îJ + -f + 1)>

C2 < 2(p+  g)a;,

63 < (p +  q)x,

M6 < (a;(J + /+ l))'^ (^ + ’\

M7 < (2a;) (̂P+«^

1/  < 1  +  E  +  x{p +  q){J + /  + 1),

M8 < (T> +  l)(i^ +  l)(6a;(J +  /  +  i ))2^(p+7)(^+-^)+^+^,

>(< £  + a;(p+9)(J + / - l ) ,

where the estimates are obtained directly from the expressions defining the variables in 

Section 5.5. Thus

uj := (!N + J  + 1)ms

< ( £  + »(? + ,)(J + / -  l) + .'+ l) (B  + l)(fi + 1)(6»:(.' + I + l))2-(i'+«)('+J)+c+'5.

Using the estimate obtained in the proof of Theorem 5.1, i.e., ni ;= +  J - 1 ,

we get

ni = (/ + h){f + D){f  + h)\ ((/ + g)U + h + J)gh{Qx{J + /  + l))2/+^+ )̂ ,
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where

/  := x{p +  q){J + / +  1), 

g:= D +  1, 

h -.= £-[■ I.

Before proving the Main Theorem, we prove first the following corollary that is simpler 

than the Main Theorem, then we give the proof of the Main Theorem following the method 

used in the proof of Corollary 5.7.

Corollary 5.7. Let

Ffr,  + M
^   ̂ Ul=i{nsn + v,k + w,)\^

be an admissible proper-hypergeometric term (free of P {n ,k )) , let

X := max{lo5|,|6,|,lcs|,|us|,|v^l,ltUs!},
S

y := max{p,g}.

and let no be a given integer. If F{n, k)  = 1 for

no < n <

then F{n,  k) =  1 for all n >  no.

Proof. From Theorem 1.4, we know that

J  < 3  + ( V - B ) +  and 

/  < 1 + (J + (yi + (C/ -  A)+ -  1)(® + (F -  j5)+).
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U :=  u,, V : = J 2 v , ,
SlVg^O 8

A : =  (a,)+ +  Y
s:b ,^0  s : v , ^ 0

A: =  ' £  a,, B : = Y , b s ,
s :b ,^0  a

S 8

Since P{n,k)  = 1 in F{n,k),  we have that  ̂ = 0. Let

X := maxlla^l, 16,|, |cs|, |us|, |ws|}

and y := max{p,g}. Then

J < ‘B + ( V - B ) +

= max{ + 5 ^(-v,)+,
8 8 8 8

<  2 xy.

Similarly,

/  < 1 + {2 xy -  l ) { 2 xy)  = {2 x y f  -  2 xy  + 1 < (2 x y f .

We express upper bounds for X, ei, €2 , €3 , and /Zj, for all i G [8 ], in terms of x and 

y. (See §5.5 for the definitions of ei, 6 3 , €3 , fi, and fii, for all i G [8 ].) From Step 3 of 

Chapter 2 , we know that

X := deg;̂  P{n, k) + J(A + {U -  >1)+) + (/ -  1)(® + (V -  B)+)

< 0 + { 2 x y y  + {{2 x y f  -  2 xy)[ 2 xy)  = {2 x y f .

Next we compute bounds for ei, 6 2 , and 6 3 ;

e, := J(A + (t>-- i)+) + (/ + 1)(53(6.)+ +
8 3

< {2xyY + {{2xy) ‘̂ -  2xy +  2){2xy) =  ( 2 x y f  +  4xy,
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62 := < 4a:y,
S  S

e 3 : = E W  +  E  \vs\ < 2a ;y .
8 S

Now we compute the bounds for fi and fii, for i £ [8]:

fj,i =  deg„ P{n,k)  +  ( /  +  1)® + J{A + {U -  A)"*")

< 0 + { {2xyY -  2xy  + 2)2xy +  {2xy){2xy)

= {2xyf  + 4o:y,

/X2  =  m ax| Y  +  Y   ̂ {bs)'  ̂+ 2 Y
5:aa^0 a:u,jiO s :o ,^ 0

< 4a;y,

^ 3  =  1 because P{n,k)  = 1,

M4 <  {2xY^^{i2xy +  i) a ;)2 -^ ( (2 - i/ )^ -2 -3 /+ i) ,

;.5<((2a:y +  l)x f2 -v ) -^

M6 < ( ( ^  +  i'+ l> -2a;)''® ^

< {{2xy + (2xy)^ -  2xy  + 2)2x^f=^y

= {2{{2xyy + 2)x^Y^\

M7 < (2a:)2"^

/i8 := max{3®'^4M5;2^3®^/X7 +  3®̂ Â e}

< max{3(2^ )̂'+"=® (̂2a:)2"2'((2a:y + ^

2(2xyp^2xy^2xf^y +  3*^«2^^^{x^i{2xyf + 2))̂ "̂ }̂

_  22i:y3(2!rj/)®+4E!;^2a;j/((2rj/)^+2)^2a;y-(- ]̂ 2̂a;y((2a:y)̂ +l) ^



II < max{jui,M2} 

< { 2 x y f  + 4a:j/.
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From Theorem 5.1, we know that ni = max{no + + 1)*' + J  -  1}, where

«/ < 1 + degfc P{ n , k )  + J{ A  + (1/ -  A)+) + /(® +  {V -  B ) + )  +  3

and

oj =  CN +  J  +  1)M8-

Estimating i' and w in terms of x and y, we get

i / < l  +  ( 2 x y f  + ( ( 2 x y f  -  2xy  + l )2xy  + 2xy  

= l  +  4xy +  ( 2 x y y ,

and

w < ( ( 2 x y f  + 2xy +

Thus

ni < ( ( 2 x y f  + 4 x y ) ( ( 2 x y f  +  4xy +  l ) ( ( ( 2 x y f  + 4xy  + i f  u;)'"

^  ^ 3 ( 2 x y ) \ 3 ( 2 i : y f y 2 ( 2 x y ) ^

In practice no and /xi/ are both much smaller than (3xyf^^^^^'; therefore we take 

as a bound for ni.

We restate the
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F (n ,k) — P{n,k) U.^s=iif^sn + b,k + Cs)l k
Ul=ii'^sn +  Vgk +  Ws ) r

be an admissible proper-hypergeometric term, and P{n,k) be a polynomial with coefficients 

in Z. Let

X := max{|a,|, |6,1, |c,|, |u ,|, |u,|,

y := max{p,q},

z := |[ra-̂ fc‘]P(n,fc)|,

d : = l  + max{deg;i. P{n, k), deg„ P{n, k)},

and let no be a given integer. I f  F{n,k) = 1 for

no < n <  (3xj/)^(‘̂ + )̂''(2®j,)«^5(d+l)(2a:i/)® (̂d+l)(2rj/)3^

then F{n, k) = 1 for all n > nn.

Proof. Prom Theorem 1.4, we know that

J  < ‘B + (V  -  B)-^ and 

I  < l  + 6 + {A + {U -  A)+ -  1)(!B + ( V -  B)+),

where 6 := deĝ  ̂P (n ,k),

U-.= Y , u . ,  V : = ^ v „
a-.v,^0 s

■A- E E
s'.bsitO s;'U,:^0

A := E  B  := Y ^b^,
s :b ,^0  s

S S
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We see that J  < 2xy,  and that

I  < J  -h I  < d-\- {2xy)^.

We express upper bounds for DnT, ei, 6 2 , 6 3 , /i, and m  for all i G [8 ], in terms of x, y,  z, 

and d. (See §5.5 for the definitions of ei, 6 2 , 6 3 , fi, and Hi for all i G [8 ].) From Step 3 of 

Chapter 2  we know that

:= degfc P(n ,k) + J{ A +  {U -  A)+) + ( /  -  1 )(® +  {V -  B) +)

< d-h {2xy){d -  1  + { 2 x y f )

< { 2 x y f  4 - d{2xy + 1).

Next we compute bounds for ei, C2 , and 6 3 :

e. < + ( P -  A)+) + ( /  + l)(x ;(( '.)+  +
5 S

< {2xy){d + 1  + { 2 x y f )  =  { 2 x y f  +  { d +  l )2xy,

6 2  := 2(J^(6,)+ + < Axy,
S 8

63 ••= X) + X)
8 S

Now we compute the bounds for /i,-, for i G [8 ]:

til = deg„ P{n,  k) +  ( I +  1)B + J{ A +  {U -  A)+)

< d -  1  + (2xy){d + 1  + ( 2 x y f )

= (2xy)^ + (d + l )2xy  + d~  1 ,

/X2 = m ax | ^  |6 , |+  |n,| , 2  (6 . )++ 2  (-v*)'*'}
s :o ,^ 0  s;u ,5^0 s:a,5^0 s : u , ^ 0

< Axy,
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A*3 = (1 + J Y z < (1 + ‘I x y f z ,

/i4 < (2xŷ y({2xy +

Ms < i(2xy +

M6 < ( ( /  + /  + l )2x^ f^^  < {2 x y^^{ {2 x y f  + d+

M7 < {2xY^^.

Let r := 2xy. Then

fis <  max{d^3®V3M4Ms,2^3®®/i7 + 3®̂ Me}

< max{d23r"+(d+i)r('  ̂^ rYz{2xy{{r  +  ,

2r^+d(r+l)3r(-2a.)r- ^ 32r(2^2)r^^2 ^  ^ + l y  }

2r^+(d+i)r+rf(33,)r ^  2^i3xf^{r^ + d + !)’■ }

= .?2’‘(3®)’’"+(‘*+̂ )’’rf2(l + J.y^+d(,r+l) _

Thus

M < max{/ii,/ii2} < + (d +  l)r + c?+ 1.

Prom Theorem 5.1, we know that n\ < ^iv ■ + I)"" + J  -  1 where

1/ < 1 + degfe P{n, k) + J ( A + ( U -  A)+)  + 7(B + ( V -  B) +)  + B

and

u; = ( X + J  + l)/i8.

Estimating y and u>, we get

t/ < d + r{d + r^) + r = + r{d + 1) +  d,
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where, still, r = 2xy, and

a; < (r" + d(r + 1) + r +

Therefore

ni < (r  ̂ + r{d + 1) + d)' {̂y^u)Y

< {t  ̂ + r{d + 1) + d)2+2(’-"+’-(‘̂ +D+<̂ )
r ^ + r ( d + l ) + c i

X ((r-3 + {d +  l)(r + l))z2'-(3a:)’- + vY

The following is a comparison of the ‘sharp’ and crude estimates in two relevant hyper- 

geometric series.

Examples. First we calculate n\ for X)fc (fc) ~ Sharp ni = 4 X 3 X 4! (4 x 18) -h 1 < 

10̂ ,̂ and crude ni = 9 x 10 X 10! (50 X 18̂ )̂̂ ° < 10̂ ^̂ .

Second we calculate n\ for (fe)̂  = Cn )• Sharp ni = 12 x 13 x 13! (10 x 13!/6!)^ < 

10̂ ®̂, and crude ni = 36 x 37 x 37! (37 x 28 X 36®°)̂  ̂ < 10®®̂ ®.

5.7 G eneralizations o f Theorem 5.1

We consider in the following theorem hypergeometric identities of the type X)fc F{n, k) = 

/(n ) where F{n,k)  is an admissible properrhypergeometric term and f {n)  is a hypergeo

metric term. (Instead of /  = 1 as in Theorem 5.1.) In Theorem 5.9, the object of interest 

will be identities of the form F{n, k) = Ŷ .̂ G{n, k) where F  and G are both admissible 

proper-hypergeometric terms.



5.7 GENERALIZATIONS OF THEOREM 5.1 76

Theorem 5.8. Let

F {n ,k )  -  +  vsk + Ws)\^

be an admissible proper-hypergeometric term where P  is a polynomial with coefficients in 

Z. Let

f (  \  -  <3(̂ ) nLi(Q̂ ^̂  + /^̂ )Yn
nU(/x*n + i..)!

be a hypergeometric term where Q and S are polynomials with coefficients in Q. Let

X  := max{lasl,16s|,|csl,|ua|,lt;sl,li«sl}5
S

y := m ax{p ,q} ,

z  := max \[n^k^]P{n,k) \ ,
0<i,j

d : = l  +  maxjdegfc P{n, k), deg„ P{n, k )} ,

and let no be a given integer. If E * F {n ,k )  =  f {n )  for no < n < n i ,  then F {n ,k )  =  

f ( n)  for all n >  no, where

. |(3 3 .^ )3 (d + lf(2 r2 /)® ^ 5 (d + l)(2 a :2 /)® _ j.(d + l)(2 a :! /)®  ^ni ;= max<

no + { d +  l f { 2 x y f  + degQ + (2a:j/+ 1) deg5 + ^ x y ( ^  la l̂ + X)1Ms|)|-

Proof. By Theorem 3.1 of [WZ3], we know that there exist a positive integer J  < S j  \bs\ +  

IvjI and polynomials ao(n), ni(n), ... , aj(n) such that

(5.14) ao{n)F(n,k) +  a i{n )F {n  -  l , k ) +'•■■ + aj { n) F{ n -  J, k)  =  0.

Since F{ n, k)  is admissible, we can sum (5.14) over k to get

a o { n ) ^ 2 F { n , k )  +  a i{n ) 'Y ^ F {n  -  l , k )  + ----h a j { n ) ' ^ F { n  -  J, k)  =  0.
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From Theorem 5.1, we know that ao(n) 7  ̂ 0 for all n > ria. (See the line above (5.13) for 

the definition of ria.) Therefore

«i(^) Efc H n  -  1, fc) + • • • + ajjn) F(n  -  J, k) 
ao{n)

for all n > Ua. Prom the hypothesis, X)* F{n, k) =  f{n)  for no < n < ni. Hence

V F(n,fc)

(5.15) /(n) = -  1) + • • ■ + a j { n ) f { n  ~ J)
ao(n)

for Ua <  n <  rii. Dividing both sides of (5.15) by /(n) we get

(5.16) Oo(n) + ai(ra)'^^7 7 7 ^  + 0 2 (n)^— 3^  + • • ■ + a j(n )-^^ ,̂ = 0 ./(n) ' /(n) ' ‘ /(n)

Putting (5.16) over a common denominator, we find that the numerator polynomial

(5.17) ao{n)fo(n) +  ai(n)/i(n) + • ■ • + a j { n ) f j { n )  = 0

where the / j ’s [ j  G [*f]o) are all polynomials of degree at most

degQ + (J +  l)degS + j ( j 2
S  S

and the a /s  ( j  G [J]o) are polynomials of degree at most i//i. (See (5.11).) Since 

ni > m ax|na +  7 - l  , no +  i '^  +  degg +  deg5 +  ( J  +  l)d eg5 '+ 7^ J^  |o!s| + | ; U ,
5 S

we have more zeros than the degree of the polynomial in (5.17). Therefore, the numerator 

polynomial of (5.16) is identically zero, or equivalently.

ao(n)/(n) + ai(n)/(n -  1 ) + • • • + oj(n)/(n  -  J) = 0 .

Thus we have (5.15) for all n > na.
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The facts that /(n) and satisfy the same recurrence relation, and that

= /(^) no < n  < n i  imply (by induction on n) that = / ( ” )

all n > no- □

The following theorem has a sum of hypergeometric terms on both sides of the equal 

sign.

Theorem 5.9. Let

and

F{ n, k)  =  P{ n, k)

G{n,k)  = Q{n,k)

be admissible proper-hypergeometric terms where P  and Q are polynomials with coefficients 

in Z. Let

X : =  max{la,l, 1&.1, |c.l, ^.1}, /  -  max{|a,|, |/3.1, | 7 . | ,  1 .̂1,1̂ «1, IV’al},
S

y := m.ax{p,q},  p:=max{r,t},

z := max \[n^k^]P{n, fc)|,
o<i,j ^

d := 1 + max{degfe P{n,  k), deg„ P(n, k)},  e := 1 + max{deg/, Q(n,  k), deg„ Q(n, A;)},

let no be a given integer, and assume wlog that xy < fg . ~

no <  n < n \, then F{ n, k)  = X)fcG{n,k)  for a l l n > n o ,  where

n, : = m a x { n o  +  2 (m a .{< i.e }  +  l ) H 2 / 9 ) ’  .
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Proof. By Theorem 3.1 of [WZ3], there exist a positive integer J  < E* \ ŝ\ + E s 1̂*1 

polynomials ao{n), ai(ra), ... , aj { n)  such that

(5.18) ao{n)F{n,  k) + ai {n)F{n - l , k )  +  --- +  a j {n) F{ n  -  J ,k)  =  0.

Similarly, there exist a positive integer I  <  E s l/̂ sl + X)s polynomials bo(n), bi(n),

. . .  , bi(n) such that

(5.19) bo{n)G{n,k)  + bi {n)G{n -  l , k )  + -----h bj{n)G{n -  I , k )  =  0.

Summing (5.18) and (5.19) over k, we get

(5.20) ao{n) ^  F{n,  k) + ai(n) F(n -  1, fc) + • • • + aj {n)  ^  F{n - J , k ) ^ 0
k k k

and

(5.21) bo{n) G(n,  k) + bi(n) G(n — 1, k) +  ■ ■ • +  bi(n) G{n — I , k)  =  0,
k k k

since both F  and G  are admissible.

By the hypothesis, xy  < f g,  so both I  and J  are bounded by 2 f  g. Our goal is to show 

that satisfies the same recurrence relation as ' ^kF{ n , k ) ,  or visa versa. This

is achieved if satisfies (5.20) or F{n,k)  satisfies (5.21) for

no < n < n o  +  (2f g  + 1) ( 1 + maxi max deg Uj{n), m ^  deg bi{n) [ )

because there are ( /  + 1)(1 + maXig[/]o deg6j(n)) indeterminates in

E
i e [ / ] o

0<r-<maXjg[/]Q deg bj(n)

^Y,G{n-i ,k)  = 0 ,

k
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and (J  + 1 ) ( 1  + maXjg[jT]o degOj(n)) indeterminates in the corresponding recurrence for 

F{n,k) .

We know from Theorem 5.1 that

I  < V g and max deg6 j(n) < (e + l)^(2 /p)®;
te [i]o

J  < 2xy < 2 fg  and max degaj(ra) < (d +  1)^(2xy)^ < ( d +  i y { 2 f g f .

Thus

m a x |( /+ 1 ) ( 1  + max deg6 j(n)) , (J  + 1 ) ( 1  + max deg aj(n))I < n2 ,

where

U2 :=  {2fg + 1) (1 + maxj max deg aj{n) , .max deg 6j(n) j | .
\  '•j'eM o «G[i]o J /

Since n-i — no >  ri2 , and uq < n < nj, we conclude that

satisfies the same recurrence relation as F{n,k) .  Further, ao(n) ^  0 for

n > tIq. Therefore, both fc) and determined inductively by

Y "  F(n,k)  =  - l , k )  +  --- +  a j {n)  F{ n  -  J, k)
’ ao(ra)

for n > Ua. We conclude that if = SfcG(n,A:) for no < n < ni, then

for all n > no. □



CHAPTER VI

MULTIVARIABLE HYPERGEOMETRIC 

IDENTITIES ARE ALMOST TRIVIAL

In this chapter, we generalize the result of Chapter 5 to r variables. The lemmas and 

the proof of the following theorem parallel those in Chapter 5 closely.

Theorem 6.1. Let

(6 .1) F{ n , k )  = P(n,k) +  •k +  c»)!_k
+ V, • k + Ws)!

be an admissible proper-hypergeometric term, and let P(n,k) be a polynomial with coeffi

cients in Q. Then given uq, there exists an effectively computable positive integer ni such 

that j /S k P (« ,k )  = 1 for all n  ̂ <  n < n \, then J^y^F{n,k) = 1 for all n >  uq.

With the same observation as the one made after Theorem 5.1, it suffices to prove 

Theorem 6.1 for those polynomials P(n,k) with integer coefficients.

6.1 Two APPROXIMATION LEMMAS

Notation. We use [n] to denote {1,2,...,n} , [n]o to denote {0} U [n], and 1 e [E]o to 

denote l\ G [Pi]o» , Ir G [Pr]o- All the bold faced letters stand for an r  dimensional 

vector. We use [a:"y*]P(a;,y) to denote the coefficient of r"y* in P { x , y ) .  As in Chapter 

5, P(n,k) Q(n,k) means that for all (m,l), |[n’"k‘]P(n,k)| < |[n’"k*]Q(n,k)|.

We need the following lemmas for the proof of Theorem 6.1.

8 1
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Lemma 6.2. Let P(n,k) be a polynomial in n and k with integer coefficients. And let 

p =  max |[n’"k!]P(n,k)|, P  = deg„ P(n,k), and Pj = deg .̂ P (n ,k),i G [r].

for all j  G [7]o} 1 G [E]o and m  G [P]o- □

Lemma 6.3. Let Q(n,k) = • k + Cj), where Ug and Cg are integers, and

bg G Z'’(5 G [g])j. Then

max |[n’”k']<5 (n,k)| < (r + 2 )« FT max{|ag|, |6ig|, |&2 s|, • • ■, |cg|}.
me[9]o,le[q]o' «€[9j

Proof. We know that

Then for every positive integer J,

max
lG[E)o,ni£[£)]o,j6[./]o

lK k']P(n-i ,k ) |<( l  + J ) V

Proof. Suppose P(n,k) = 53m=o some fixed 1 and m, we have that

|[k*n’”]P(n -  j,k )| is

t= o  '  ^

=  (1 +  J) p̂

9

S = 1

(n + k • 1  + 1 )« max{|ag|, 16ig|, |6 2 |̂, ■ • •, \brs\, lcg|}.
a€[9]

Since the absolute value of the largest coefficient of (n + k • 1  + 1 )® is less than (r + 2 )’ ,

m6 [
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6.2 The leading coefficient, ao(n), of the recurrence

In this section, we estimate the degree and the largest coefficient of the leading coef

ficient, ao(n), a polynomial in n, in the recurrence of T'(n,k). With the upper bounds 

for the degree and the largest coefficient, we compute an upper bound for the positive 

integer with the property that for aU n > ni, ao(n) ^  0. Thus the proof of Theorem 6.1 

is complete.

The plan for achieving this goal parallels that of §5.5, and consists of the following four 

stages:

Stage 1. Take a given admissible proper-hypergeometric term F{n, k), and use Theorem 

4.2A of [WZ3] to say that F {n ,k )  satisfies a recurrence of the form:

(6.2) ao{n)F{n, k) +  ai {n)F{n  -  1, k) -|-----h a j {n )F (n  -  J, k) = ^  AiGi{n,  k),

where the aj(n)’s are unknown polynomials in n. Divide (6.2) by F {n ,k )  

(:= ^ [ ^ )  and put the resulting sum of rational functions over a common 

denominator.

Stage 2. Equate to 0 the coefficient of each monomial of k in the common numerator, 

and solve the resulting homogeneous linear equations for the unknowns flj(n)’s 

and C j ( e , n ) ’s (see (6.3) below for C j ( e , n ) ’s )  by Cramer’s rule for ao{n) only, in 

the form

«o(̂ i)
det M{  
det M'  ■

(See §5.3 for the way M'  and M{ are obtained.)

Stage 3. Observe that ao{n) = 0 exactly when detM( = 0. Therefore, we express 

det M{ as a polynomial in n, and obtain an upper bound for the degree of
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detM{ (see §5.6 formula (5.11)) and the largest coefficient of detM^ (see §5.6 

formula (5.12)).

Stage 4. Use the simple fact that if f { x )  is a polynomial over Z, d is the degree of f {x)  

and m  is maxigjdjo l[a;’]/(a:)|, then f {x )  0 for all a: > md.  (See Proposition 

5.4 in §5.4.) Thus we use the estimates in Stage 3 to obtain an Ua such that 

for aU n > Jia, ao{n) 0.

.We now proceed to do Stage 1 of the plan in detail. Let an admissible proper-hyper- 

geometric term JP(n,k) be given such that P(n,k) in F(n, k) has integer coefficients. (See 

formula (6.1) for the definition of F(n,k) . )  Then Theorem 4.2A of [WZ3] guarantees us 

the existence of polynomials ao(ra), oi(n),. . . ,  aj {n) ,  not all zero,

■'s |^(EEic>-vi + EEi(v.vi)’' ,
« r '  a r'

and hypergeometric functions G i ( n , k ) ,... , Gr{n,  k) such that Gi{n,  k) = Ri(n,  k)jP(n, k) 

for rational functions Ri (i € [r]) and such that

r
(6 .2 ) ao{n)F{n,k)  -|- ai (n)F{n  -  l,k) 4- • •• + a j { n) F{ n  -  J,k) = ^  A,Gi(n,k),

t=i

where AjGj(n,k) = Gi{n,k)  -  G i { n , k i , .. , ; k i - i , k i  -  l , k i + i , . . .  ,kr).

Without loss of .generality, assume . ao(n) is not identically zero. Prom Chapter 4, we 

know that P,-(n,k) is of the form

(6.3) E
0 < e < ( N i ,N i ,

e l < N i

Cj(e,n)k®
Dn,{r>,k)

for some unknown polynomials in n, namely c,(e,n), where

Wi : = d e g ^ P { n , k )  +  { I i - l ) { ‘Bi +  { V i - B i ) + )  +  J { A +  i U - A ) + ) +  +  Bt )+) ,
i<t<r
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and

DR, {n , k )  =  P(n,k) f[(a,Ti + b, • k + c*>
5=1

<1

X + V, • k + Ws + u
5 =  1

(See Chapter 3 for the definitions of A,'S>i ,A,Bi,U and Vi {i G [r])-)

Let ki  denote (fci, . . . ,  fci-i, -  1, ki+^,..., A:,). To eliminate the factorials in (6.2), we

divide both sides of (6.2) by F{ n , k )  ;= P(n,k)/P(n,k) to get

F{ n , k ) »6[r]

= E
ieM

'X:^Cj(e,n)k^ _ c,(e, n)kf P(n, kQP(n, kQ
Pfli(n,k) DRi { n , k i ) P { n , k i ) F{ n , k )

where Pfl,(n,k) ;= PR,(n,k)/P(n,k). In order to avoid writing the hat, we use Pfi,(n,k) 

to denote PH, (n,k), and with this notation, we use Ri { n, k )  to mean

C j(e,n)k®

E
...................... .

e l o r .

D R , { n , k y

We find a common denominator of

. . P i n - l ,k )  . , ,P ( n - J ,k )
(6.4) ao(n)P(n,k) + «i(») + ‘ ‘ ‘ + P(n,k) '

Cj(e, n)k
~ \ ^  DR (n,k)

i .................... .
e-KMi

/  Ci { e , n ) k l ^ - - - ( k i - l Y‘ - - - K'
^  \ D R . ( n , k i , . . .  , k i - i , k i  -  l , k i + i , . . .  ,kr)

e l < > r ,

P(n, k i , . . . ,  fci-i, kj — 1, A;,4. i , • • •, A?r) 
P(n,k)
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The computation involved for finding a common denominator of (6.4) consists of finding

a common denominator for LHS of (6.4), each summand of RHS of (6.4), all of RHS of 

(6.4) and finally finding the least common multiple of the denominator.

First we note that a common denominator of the LHS for (6.4) is

D lhs ■■= f[(a^« + b* • k + x JJ(u .n  + v, • k + + 1)̂
5=1 5=1

and Dlhs divides D r  ̂ for all i G [r]. Therefore, it suffices to find a common denominator 

of RHS of (6.4). To do so, we first find a common denominator for every term of the 

summand of RHS of (6.4), namely.

(6.5)

Since

R,(n,k) -  Ri{n,ki )
F{n,kj )  

F( n , k )

D r , (n,k) = f [ (a ,n  + ■ k + c )̂
5=1

S =  1

we replace fcj by — 1 to get

DR, {n , k i )  =  JJ(a jn  + b, • k + -  6j,)
5=1

X n c t i . n  +  V . ■ k + « ..  + 1 -
S = 1

Furthermore, a denominator for is

JJ (a ,n  + bs-k  + Cs)^^^x ]^(u^n + • k + + 1)̂
5 =  1 5 =  1
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Therefore, a common denominator for (6.5) is
p
E
5 = 1

(6.6) E l(“>" + ■ I' + “'’)■

X  n ( u , n  +  V ,  ■ k  +  » .  +
5 = 1

X JJ(osn + bj • k + X + Vs • k +  W5 +  1)̂  .

5 = 1  « = i

Let As = UsTi + bs • k +  Cs and =  UsU +  \ ,  ■'k +w^.  Putting (6.5) and (6.6) together, 

we conclude that a common denominator for the RHS of (6.4) is

D(n, k )  : =  X  H ) ! / .  +
5 = 1  » = 1

X ] ^ ( A s ) " " ‘' ' - - — X n ( C / 5  +  1 )—
5 = 1  S = 1

Putting (6.4) over D(n,k), and collecting all terms to the LHS, we get 

T o  +  L i  +  • • • +  L j  — X /t6 [ r ] ( -^ U  ~  R i 2 )
(6.7)

where

D{n,k)
0 ,

 ̂aj(n)F{n ^
F(n,k)

a,(n)P(n -  ,-.k)nL,(A. + 1)?<^ n L ,(C '.)^
+ 1)«— >*

5 = 1  5 = 1

X f[(f/5+1)(
5 = 1 5 = 1

= aj(n)P(n -  j,k ) j |(A s  + 1)-'̂  ]i[(t^«)^ ’
5=1  5=1  5=1

X n(C^5 + i [ {As -  j{as)+)
^  (a . )  + (J - j ) +E lo < ^ ^ f« ( f c .A ^

5=1
g

5=1

5=1
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for j  G [J]o, and for i £ [ r ] ,

E Cj(e,n)k®

and

e l O f ,

E
el<J^i

,(e,»)k«'\ n (C /. +
/  ,«=1 S=1

X ] ^  ( -  J { a s ) ' ^  -  ^
s=l'^ l<t<r '

q f  \  (~^^ )̂ ~̂^El<̂ <i L(~^u)

(f>o)"''+Ei<t<i A(f><s)+

X n ( t ^ ,  + ^(-W ,)++ Y .
,=lV l<i<r '

Ri2 — D{n,K) ~ 2_^ n„ ("ji If .')
e l < > f .

= ( E  (n*rE(-i)''<(®'’*)CO*‘‘‘’'
\0<e<(>ri,>ri.....i< e i

el<3Nri

X n ( A , + 1)(-‘‘-'* n
■ 1 A=1 5 =  1 5 = 15 = 1

p
5 = 1  5 = 1

X f r  ( As -  max(6is)+ + 1 
■‘ ■■‘ i V  ‘ S H5 = 1  '

-bt+maxi6(r]{(>i»)''‘

X n f c / s  +  m ^ ( -V is ) "
sVA

X n  ^A s -  J ( a s )+  -  Y  F i b i s ^ ^  
7 = 1 K t < r  '

\  E i o o M ^

Ei<t<(
X fl(Us + Ji-Us)-̂  + Y  +

s = l ^  l < t < r

In Stage 2, we solve for the unknown polynomials, ao(n),. . . ,  aj { n)  and Cj(e, n) {i 6 [r], 

and 0 < e  < ... ,Jf,) ^ • 1 < 7<i), we expand the terms of (6.7), and collect like

monomials of k. Since the LHS of (6.7) is zero, the coefficients of all k® must be identically
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zero. This yields a system of linear homogeneous equations. We can express the system 

in matrix form as Mx = 0 for x* = (ao ,a i , . . .  ,aj,Cj(e,n)). To solve for ao(n), we apply 

the procedure in §5.3, and get

ao(?i)
detM{
det M ' ■

We are now ready to do Stage 3 of the plan. First, we find an upper bound for the 

maximum degree of the entries of M . Second, we find an upper bound for the largest 

coefficient of the entries of M . Third we find the size of M . Finally, we find upper 

bounds for deg det and maxj |[n*] det M{|. We use “B  to mean (!Bi,!B2 , ... ,®r); and

(b.)+ = (N,.

Step 1. An upper bound for the maximum degree over all the entries of M  regarded as 

polynomials in n.

Lemma 6.4. Let

/xi :=deg„P(n,k) + I - S  +J(.A + ( t / - i ) + ) +  max6;^ + ^  m ^(-u ;,)+ ,
s:a,^0

where for  / G  [ r ] ,

®i= E E  E«*t +E(-“*)*'
a:a,:^0 s :u ,^ 0  «e[p] s€[9]

U = Y , U s ,
sg[q] «e[p]

and let

M2
s : a , ^ 0 s:u ,^0

‘B i + { v , - B i ) + +  Y Y  E
s:u ,:^0

+ max
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where

V i=  Y, Vis, B i =  Y, his.

Then the maximum degree over all entries of M  is bounded by max{/ii,/i2 }-

Proof. Let the first row of M  correspond to the coefficient of k® in the common numerator 

of (6.7). We use M p j  to denote the polynomial in n multiplied by aj{n)]sP in the common 

numerator of (6.7). Then

degMp.j < deg Mo,j for all j  G [J]o and p.

Let

smb — E
s:a,^0

max bt,
/6[r]

and smv = E
s;uj#0

max(—u/s)"̂ . 
l€[r]

We know that

deg Mo j(n) = deg„ P(n, k) + smb + smv

+ E (>(-“”)■" + u - 3)“t  + E
s:a ,:^0

s :u ,^ 0  fG[r]

Therefore,

max degMoj(n) = deg„ P(n,k) + I • $  + J{A  +  {U — A)" )̂ + smb + smv — /ii,
i e [ . / ] o

where the variables “B , A , U and A  are defined in the statement of Lemma 5.4.

For the remaining Mp,(i,e), those multiplied by Cj(e,n)kP, we compute an upper bound 

for the maximum degree from the expressions of R n  and Ri2 , (i 6 [r]). For all e, p, and
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z € [r], we have

degAfp,(i,e)(n) 

< smb + smv

E + E  + E  {< + E  }
. s : a ,^ 0  s : u , ^ 0  * e [ i - l ]

= smb + smv

+ max|!B/+ (F; -  .B/)'''+ ^  ^  Itbfs+

=  M2-

Thus the maximum degree over all entries of M  is bounded by max{^i,/i2 }- ^

Step 2. An upper bound for the largest coefficient of the entries of M .

We estimate the largest coefficient of the entries of M  by first finding an upper bound for 

max,,pje[iio \[n‘]Mpj \ ,  then for max,,p,(i,e) |[«']^p,(i,e)l, where Mpj is the polynomial in 

n multiplied by aj(u)kP, and respectively Mp,(i,e) is the polynomial in n multiphed by 

Cj(e, n)kP in the common numerator of (6.7).

Let

E D
P(n,k) := iimk'n™,

1=0 m = 0

P3 := (1 + J) ^  max{|tiOT| : 1 6 [E]o and m G [P]o},
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:=  n  n  m a x { la s |, |6;s|ig[r],|c^ -  i |}
3;bj760 «6[maX|({>u)+-l]o

X n  n  m a x { lu ,|,|t ; is |;e [r ],lw s  +  *|}
s:(-v,)+?tO t'e[maxi(-t;ij)+]

 ̂ n  n  max{|a5l,|6js|i6[r],|cs -  J (as)+ -  i|}
s:b+#Oie[I-(b.)+-l]o

X n n max{|Us|, |V(s|(e[r],|'f ŝ + -/(—“a)'*' +  *1)5

s:(-v,)+5^0 «6[I-(-Vj)+]

/X5 := max ( TT TT max{|as|, |6 ij|;e[r], + *]}
S:a,<0 i6 [j(-a.)+]X n n max{|aj|,|6 isl;e[r],|c5 -  Ja+ + i|}

s:a,>Ofg[(j-j)o+]

^ n  n  m ax{|u ,|,|i;(s |,g [r]^ |w s +  +  1 -  *1}
s:u,<0i6[(J-j)(-ti,)+]

X n n max{|u,|,|v;5|/g[r],|w, + 1 - i|}j,
s:u,>Q tG[i(uj)+]

where HieWo max{+} = 1 (resp. n.eij,] max{*} = 1) in M4 and Hs  i f  x  ^  No (resp. y  ^  N), 

and

7Ti ;= J{A + (U -  A)'*') + i  • $  + ^  max{bu)'  ̂+ ^  max(-Vis)'*'.
«€[p] s6[9]

We know from Lemma 6.3 that

P { n  -  j ,  k ) f j , 4H 5{ n  + k • 1 + 1)’"'.
a  j i n )

Moreover, Lemma 6.2 states that

maxi[n'"k*]P(n -  j,k )| < fj.3
m,l

for all j  G [ J ] o -  We therefore conclude that the largest coefficient of M p j  for all p and 

j  G [J]o is bounded above by H 3fJ,iiJ-5 i r  + 2 y i { D  + 1) riiG[r-](-̂ « +  i-)-

We now compute an upper bound for the coefficients of Mp_(j_e)) for-all exponents p 

and e of k, and i  G [r]. Recall that -Mp,(,-,e) is the polynomial in n  multiplied by Ci(e,»)kP
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in the common numerator of (6.7). After the expansion of R n  and Ri2 , we get for a fixed

pair (p,0,

R il

X

2  Ci(e,n)k'
0 < e

el<7 î
j^ p - ( e i  ,ej -  j,e (+ i , . ..,e r ) |

/

R i2

-j
0 < e  ^ U l ^ i  j<Bi  

e l < N ,

Let

fj.il := n  n  max{|as|,16i,|/g[r],|cs -  j|)
s:b?'?iO Se[m ax,g[r](6 |j)+-l)o

X ]][  max{las|,|6is|ie[r])lcs - /(fts)'' '-  I • (b j" )+ i l} ^

• ie[((>o)'*'+E(g[i-i]

 ̂ n  n  max{|u,|,lt;;s|(g[r],|u;s + j\}
s :( -v ,)  + ̂ 0  Seln^axiew C -w J+l

PJ max{|Us|,|u/al;g[r],l«^s + + I ’ (“ Vs)'*' “  j|}^  ,X
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:= n n max{|as|, |6is|(6[r], + j \ }

X n n max{|a,|,16(,|(g[r],|cs -  j \}
s : { b i , ) + >O je [ (b i , )  + - l ] o

X n n max{lu,|,|v;s|(e[r],k« -  j \ }
a - . { v i , ) + > Oj e [ { v i , ) + - l ] o

X n n 
X n ( n

+ max(6[r](ti,)' ]̂

X max{laj|,|6;i|(g[r],|cs -  J (a s )+ -  I • ( b a ) + - i |} ^

X n n max{lus|,lt;is|;g[r],|wa +  m ax(-v/s)+ -  j \ }

+ maX|6[,.](-U(,)'*'-l]o

X J][ max{|Usl,|V(5|;g[r],ks + •/(-««)■'■+I • (-Va)'*'

where max{+} = 1 (resp. max{*} = 1) in /in and /tn if a; ^ No (resp.

y ^ N ) .

Furthermore, let

TTii : =  + b f +  ^  It{bts)'^)
s€[p] t€[»-l]

+ max(-yj3)"*" + (-nis)"*" + I t { - v t s ) ' ^ ' j ,
ŝ€[9] «€[>-!]

and

7Ti2 := X) "*■ X]
l,s l,s

+ ( X^ - ^ t s +  X^ It(bts)'^^
sG[p] <6[«'-l]

+ ( ^  max(-vu)‘'‘ -  + XI
a6[g]
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By Lemma 6-3,

max
e ,m

Eii

2  Ci(e, n)k®
0<e<(N,-,Ni

e l< N i

is bounded above by (r +  and

max
e,m

Ri2

E (n*f'E(-i)M*.
0<e<(Ni,N,-,.

e.l<>f,
,,Ni) j<ei \ 3  J  /

is bounded above by + Thus from the expressions of we conclude that

for a fixed i, the largest coefficient of the entries of M  multiplied by c,(e, n) is bounded 

above by

(r +  2 r ^/ /a+2^- ( r  + 2 r ‘>,-2.

Let

fie := max{/X3/i4/̂ s(?- + 2 P (D  + !)]][  (Ei + 1)} U | ( r  + +  2^ '(r + 2)’̂ ‘̂ /i,-2} .
i€[r] ■' ‘SM

Then the largest coefficient of the entries of M  is bounded above by We formulate the 

result above in the following

Lemma 6.5. The absolute value of the largest coefficient of the entries of M  is bounded 

above by ■

Step 3. The size of M .

As in Chapter 5, we need the size of M  to complete the estimate for the proof of Theorem

6.1.
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Proposition 6.6. Let

A :=  Y ,  ■= £  ^  S
s : b , 5 ^0  se[p] s :v ,?5 0  * € [9]

••= ^  at + XI := X
s : b , / 0  s : v , 9tO s€[p] s€[9]

:= degkP(n,k) + (P -  l)(®i + {Vi -  S<)+)

+j(yi + (P -  A)+) + X  + (Vt -  Bt)+).
i < t < r

Then the number, v, of rows in M  is at most

m ;= 1+deg. P(n,k)+ Y ' max6;^+^ max(-r(.)'^+J(.A+(C/-A)'*')+I-(®+{V-B)'*'),
i b l  .€(«!

and the number of columns in M  is

Proof. The number of rows in M is 1+ the degree in k of the common numerator in (6.7).

But the degree in k of the common numerator in (6.7) is less than or equal to

maxi max degfc i j ,  max degĵ  i?ii, m ^degkPt2f-
l j 6 [ J ] o  « € H  i e [ r ]  }

From the expressions for L j, R n  and R i2 , we get that

m ^  degkij = m ^  ( degkP(n,k) + X  +  X
j6[J]o jeMoV .e[p] «€[g]

+ i (  X  X
s 6 [ p ] : b , ? 5 0  s € [ g ] : v , ? « 0

+ (j-j){ E  “̂ + E  (-“*)*)
«6[p]:bj5^0 s€[9]:v,# 0

+ E I ■'>* +E  •■ (-''•)'")
se[p] *e[9]
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= degkP(ra,k)+ ^ m ^ x . b f +  max(-

+ 1 - S  + J { A  + { U - A ) + ) -

that

max degij R n  < max
«'€[r] “  “  t€[r]

maxf-Vis)'*'

+  ^  (bis +  ^ 2  + X /
,e[p] t6[i-l] S6[?] *6[t-l]

= degk P(n, k )  + J { A  + { U - A ) + )  + l - ‘B

+ E max
i€[r] (bis)'  ̂ +  X]

s6[9l
+

+ max
tejr] ( Y ,  w  -  B ,)*

i < t < r

{ V i - B i ) + ) ,

and that

maxdegk Ri2 < maxi Nj +  X ]  I +  X  l^-lî frl \ ^i6[r] V s6[p] ®6[9]

s€[p] «€[?]

+ E  E  + E  E
*6[p] <e[i-l] ®e(9] t€[i-l] ^

= degkP(n,k)  +  J { A  +  {U - A ) + )  +  l - ‘B

+  X  max(6;,)+ + X  max(-t;;s)+
®€[p] ®€[?]

+ m a x ( X l ^ i ® l + E l ^ - | - 2 ® « - ( ^ « - ^ « ) + +  E
»6[p] ®6[?1 i< t<r
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Thus

+  J { A +  { U - A ) + )  +  l - ^

+ m ax| max( It{Vt ~ -St)'*’ -  (hi -  -S*)'*’) >
I \Z^<r ^

'Y ' It{Vt -  Bt)'^ -  {Bi -  hi)+  ̂ I

= 1 + degk P(n,k) + Y  + E
se[p] *€[g]

+ J{ A +  { U -  A)+) + I • (® + (V -  B)+) = /2 7 .

Next we show that M has 1 + J  + Eie[r] E JIo columns. We know that the

number of columns in -M is equal to the number of entries in the vector x which is

|{aj(n) : j  G [J]o} U {ci(e,n) : e > 0,i G [r]}|.

There are J  + 1 a j(n )’s. Our task is to find |{cj(e, n)}| for all e > 0 such that e • 1 < Nj 

for all i G [r].

For a fixed i G [r], we note that |{ci(e,n) : e > 0 ,e  • 1 < Ni}| is the number of ordered 

partitions of / (/ G [>fi]o) into r non-negative parts. In other words,

( 6 . 8 )  | { c i ( e , n ) : e > 0 , e - l  < 3 s f i } l  =  ^ 3  =  S  ( t - 1  ) '
(e[?̂ .]o ''  ̂ 'G[̂ do  ̂ ^

Summing (6.8) over all i G [r], we get

| { c i ( e , n ) : e > 0 , e - l < N i , * G M } |  =  Y  >

«e[r] ;e[Ki]o ^ ^

Thus the number of columns in M is /ig = 1 +' J  + Sie[r] Siel^J'do
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Step 4- Upper bounds for deg det M{ and majCj |[n*] det M[  | .

Since the rank p of M is bounded by u, the number of rows, deg det M- {i £ [p]), or more 

specifically,

deg det M [ < v  max{/ii, P2 } < Pr max{pi, P2 } •

From the way we obtain M[ from M  (—see §5.3 for the steps), we have max, \ [n']M[\ is 

less than the product of the number of columns of M  and the largest coefficient of the 

entries of M .  Thus

max |[n‘]Mi| <
t

Using the definition of the determinant, we have

max I[n’] det Mil < py! (p8 P6 (max{pi,p2 } + 1))'"̂ - □i  ‘

In Stage 4, we apply Proposition 5.4 to get ni, thus completing the proof. Recall from 

§5.4 that a polynomial solution for the leading coefficient, ao{n) is detMj. From Step 

4 of Stage 3, we have p7 max{pi,p2 } as an upper bound for the degree of ao(n), and 

P7 ! (p8 P6 (max{pi,p2 } + 1))'̂  ̂ as an upper bound for the largest coefficient of ao{n). By 

Proposition 5.4, Oo(n) ^  0 for all

n > p7max{pi,p2}p7!(A^8P6(max{pi,p2} + 1))^  ̂ =: na-

Since the recurrence relation satisfied by X)k order at most J, we can take

ni to be no + J  — 1 when the given no is small relative to no- On the other hand, if no is 

large, it suffices to take ni to be

max{no + P7niax{pi,p2},na + J  -  1 }. □



CHAPTER VII

WHEN IS Y,kHn,k)  HYPERGEOMETRIC?

Let F( n, k)  be a proper hypergeometric term. Suppose we want to know if F{n,k)  

is hypergeometric. Petkovsek’s algorithm [P] tells us how to check if A:) is hy-

pergeometrically summable from the recurrence satisfied by provided F{n,k)

contains no parameters.

From Theorem 3.1 of [WZ3], we know the existence of polynomials, oii j{n),  not all 

zero, and integers, I ,  J,  such that

/  J

(7.1) =
j=0 j=o

Writing (7.1) in the following way

I I  I
(7.2) Y ^ a i f i { n ) F { n , k - i )  +  ' ^ a i ^ i { n ) F { n - l , k - i )  +  - ■ ■ +  ' ^ a i j { n ) F { n - J , k - i )  =  0,

t=0 »=0 i=0

and summing over k, we get for an admissible proper-hypergeometric term, F{n,k) ,

I I  I

(7-3) (^ « t ,o (^ i) ) /n  +  ( ^ « i , l ( j* ) ) /n - l  + • • •+ {^Oi i , j { n) j fn - J  = 0,
t=0 i=0 «=0

where /„ = Y2k )̂- there are rational functions, a,-j(n), such that 

I  I

(7.4) ^ a i,o (n )  = l and J]^Q:ij(n) = 0 ( j > 2 ) ,
i=0 t=0

then fn is certainly hypergeometric because

fn = (rational function in n)/„_i. 

100
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Remarks. We do not have to insist on (7.4). In fact, /„ is hypergeometric if there exist 

a i j ( n )  such that in (7.3) all but two consecutive coefficients of the /„ ’s are zero.

We present an algorithm that takes an admissible proper-hypergeometric term, F(n,  k), 

and checks if F{n,k)  is hypergeometric by checking the sufficient condition.

Algorithm Suff

Step 1. Let a i j  be indeterminate polynomials in n. Form

(7.5)

Step 2.

^  a i j { n ) F { n - j , k - i )  _
4 ^  F(n,k)

Find a common denominator of (7.5), and put everything over the common 

denominator. Prom the degree in k of the common denominator, find I,  J  such

that

(J + 1)(J + 1) > 2 + J  + degi  ̂Numerator.

Step 3. Solve for cxi,j{n) in the system of homogeneous linear equations obtained from 

the numerator by setting the coefficient of each power of k to zero. Let M  he & 

matrix over Z[n] such that M a  =  0, where

a  = (ao,o,«i,o,---:a/,o,«i,o,---,a/.j)‘

and the ith row of M  corresponds to the coefficients of k*~ .̂

Step 4. To incorporate (7.4), we augment M  by adjoining C  to the bottom of M, where 

C  is the matrix corresponding to (7.4) with the condition for J2i=o = 1 in 

the last row of C. Note that C is J  by (7 + 1)(7 +1). Let the augmented matrix
-0-

m ' . We want to solve for a  such that A a  =c 0
-1-
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Step 5. To see if such an tx exists, we devote the rest of the algorithm to checking 

whether
Ol 

A  :

0 

1

rank A =  rank

since a  exists iff rank A = rank A  :
0 
1-1

Step 6. Fix the last row of A  and row reduce the rest of A. Attach the last vector of the 

elementary basis to the resulting matrix.

Step 7. To see if

01

A
rank A  = rank

we perform Gaussian elimination to the last row of the matrix from Step 6. If 

at any time, we get a row whose first (not also the last) non-zero entry cannot 

be eliminated, then we are done because

Ol

rank A =  rank
0

1 .

and such an a  exists. Otherwise all but the last entry in the last row survives



the process. In this case,
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and no a  exists.

01

rank A ^  rank
0

1.

The algorithm above checks if a given admissible proper-hypergeometric term satisfies 

the sufficient condition (7.4). If it does, then the sum is hypergeometric. Petkovsek [P] 

gives necessary conditions for to be hypergeometric by solving the following

decision problem.

Given a linear recurrence relation of order h with polynomial coefficients, decide whether 

the recurrence has a solution that satisfies another recurrence o f order 1; and if so, find 

that recurrence of order 1.

His algorithm works if the polynomial coefficients do not contain any parameters. We 

still do not know any necessary conditions on an admissible proper-hypergeometric term, 

F{n,k) ,  for the sum F{ n, k )  to be hypergeometric.
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Symbols

k = { k i , k 2 , . . . , kr) ,  20, 81

y*' =  20

=  m ax{0,a;}, 11 

= (yt 89

X—  = x{x — 1) • • • (a; -  (m  -  1)), falling 

facto ria l, 11, 20 

a:™ =  x{x +  1) • • • (a: +  (m  — 1)), rising 

factorial, 11, 20 

[m] =  { 1 , 2 , . . . ,  m }, 11, 48, 81 

[m] =  [m i] X [m2] X • • • X [rur] C 

[m]o =  { 0 , 1 , . . . ,  m }, 11, 48, 81 

[m]o =  [mi]o X [m2]o X • • • X [mr]o Q Z ’’, 

81

[a;"]P(x), the coefRcient of a;” in P, 48 

[a;”y*']P(«,y), the coefRcient of 

'̂̂ yx'ŷ  ̂■■•yr" P-, 8 i

X • y = Xi j/1 + X2y2 • • • + Xryr, the inner 

product, 20

X < y iff a;,- < t/j for all f, 20 

P(n,k) ■< Q(n,k) iff |[ra'"k‘]P(ra, k)| < 

|[n’”k']^(ra,k)| for all m and all 1, 

48, 81 

V, the gradient 

7,11

/*, an upper bound for 7, 11 

J, 11

7*, an upper bound for 7, 11, 21, 36 

no, 8, 43, 44, 72, 76, 78, 81 

ni, 8, 43, 44, 67, 72, 76, 78, 81, 99 

N = {1,2,...}, the natural numbers 

No = {0 ,l,...} ,20  

Sp, the symmetric group of permuta

tions on p letters

109

sgn(o-), the sign of the permutation a
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T erminology
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Descartes’ rule of signs, 25 

fc-free recurrence, 10, 20 
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Gaussian hypergeometric series, 2 

generic rank, 50 

height, 53 

Hermite, 1

hypergeometric series, 2 

Gaussian, 2 

hypergeometric term, 4

admissible, [WZ3, p. 601], 42 

proper, 10, 20 

Jacobi, 1, 16 

Laguerre, 1

Legendre, 1

LHS, left hand side

Main Theorem, 7, 43, 72

Petkovsek’s algorithm, 8, 100, 103

proper-hypergeometric term, 10, 20

admissible, [WZ3, p. 601], 42 
well-defined, 10, 20

rank, 50

generic, 50

recurrence

fc-free, 10, 20

RHS, right hand side

Saalschiitz’ identity, 48

well-defined

proper-hypergeometric term, 10, 20

wlog, without loss of generality


